CONTENTS

Preface	111
Notation	vii
List of Tables	viii

CHAPTER 1

THE DIFFERENTIAL AND INTEGRAL CALCULUS OF VECTORS

1.1	Scalar and Vector Fields	1
1.2	Directional Derivative of a Scalar Field	
	Gradient	2
1.3	Directional Derivative of a Vector Field	6
1.4	Differentiability of a Scalar Point Function	· ·
	Gradient and Directional Derivative of Combined Scalar Fields	7
1.5	Scalar and Vector Line Integrals	10
1.6	Scalar and Vector Surface Integrals	16
1.7	Scalar and Vector Volume Integrals	20
1.8	Stokes's Theorem	
	Curl of a Vector Field	25
1.9	Alternative Approach to Stokes's Theorem	31
1.10	Application of Stokes's Theorem	37
1.11	The Irrotational Vector Field	40
1.12	Flux Through a Closed Surface	
	The Divergence Theorem	48
1.13	Alternative Approach to the Divergence Theorem	52
1.14	Application of the Divergence Theorem	56
1.15	The Solenoidal Vector Field	57
1.16	Expansion Formulae for Gradient, Curl and Divergence	66
1.17	Deductions from Stokes's Theorem and the Divergence Theorem	67
1.18	The Laplacian Operator ∇^2	79
1.19	Invariance of Grad, Div, Curl and ∇^2 With Respect to Choice of	
	Rectangular Axes	81
1.20	Moving Systems and Time-Dependent Fields	84
1.21	Time Rates of Change of a Vector Quantity Referred to Coordinate	01
	Systems in Relative Motion	101
1.22	Complex Scalar and Vector Fields	104

CHAPTER 2

CURVILINEAR COORDINATE SYSTEMS

2.1	Curvilinear Coordinates	109
2.2	Cylindrical Coordinates	114
2.3	Spherical Coordinates	116
2.4	Line, Surface and Volume Integration in Cylindrical and	
	Spherical Coordinates	118

FIELD ANALYSIS AND POTENTIAL THEORY

2.5	Grad V, Curl \overline{F} , Div F and $\nabla^2 V$ in Orthogonal Curvilinear Coordinates	128
2.6	Grad V, Curl $\overline{F},$ Div \overline{F} and $\nabla^2 V$ in Cylindrical and Spherical Coordinates	133
2.7	Derivation of Grad V, Div \overline{F} and Curl \overline{F} in Cylindrical Coordinates by Transformation of Axes	134
2.8	Derivation of Grad V, Div \overline{F} and Curl \overline{F} in Spherical Coordinates by Transformation of Axes	139
2.9	Derivation of Curl \overline{F} and Div \overline{F} in Orthogonal Curvilinear Coordinates via Line and Surface Integration	147
2.10 2.11	$\nabla^2\overline{F}$ in General Orthogonal, Cylindrical and Spherical Coordinates Change of Volume Resulting from Transformation of Coordinate	153
	Values	159
2.12	Surface Relationships	160

CHAPTER 3

GREEN'S THEOREM AND ALLIED TOPICS

3.1	Green's Theorem	169
3.2	The Harmonic Function	171
3.3	Green's Formula	177
3.4	Gauss's Integral	
	Solid Angle	179
3.5	Treatment of Surface and Point Discontinuities in Scalar Fields	184
3.6	Uniqueness Theorem for Scalar Fields	189
3.7	Theorems Relating to Vector Fields	
	Vector Analogue of Green's Theorem	192
3.8	Green's Function	
	The Dirichlet and Neumann Problems	198
3.9	Scalar Fields in Plane Regions	202
3.10	Minimal Theorems	206

CHAPTER 4

UNRETARDED POTENTIAL THEORY

4.1	The Scalar Potential of Point Sources	217
4.2	The Scalar Potential of Line Sources	225
4.3	The Scalar Potential of Surface Sources	233
4.4	The Scalar Potential of a Volume Source	236
4.5	The Representation of a Scalar Point Function as the Combined	
	Potentials of Surface and Volume Sources	244
4.6	The Gradient and Laplacian of the Scalar Potential of Point	
	Sources	
	Gauss's Law	248
4.7	The Gradient and Laplacian of the Scalar Potential of Line and	
	Surface Sources	259
4.8	The Gradient of the Scalar Potential of a Volume Source	273
4.9	The Laplacian of the Scalar Potential of a Volume Source	
	Poisson's Equation	
	Extension of Gauss's Law	279
4.10	Equivalent Layer Theorems in Scalar Potential Theory	289
4.11	The Method of Images in Scalar Potential Theory	292
	•	

x

CONTENTS

4.12	The Vector Potential of Line, Surface and Volume Sources	304
4.13	Reciprocal Relationships in Scalar and Vector Potential Theory	307
4.14	The Divergence, Curl and Laplacian of the Vector Potential of	
	Simple Line and Surface Sources	312
4.15	The Divergence, Curl and Laplacian of the Vector Potential of	
	a Volume Source	320
4.16	Equivalent Layers and Image Systems in Vector Potential Theory	333
4.17	The Grad-Curl Theorem	342
4.18	The Gradient and Laplacian of the Scalar Point Function	
	$\int \overline{\mathbf{P}} \cdot \mathbf{grad} \frac{1}{\mathbf{r}} \mathrm{d}\tau$	347
4.19	The Divergence, Curl and Laplacian of the Vector Point Function	
	$\int \overline{M} \times \operatorname{grad} \frac{1}{r} d\tau$	359
4.20	Introduction to the Macroscopic Potentials	378
4.21	Inverse-Square Vector Fields and their Relationship to the	
	Potential Functions	382

CHAPTER 5

RETARDED POTENTIAL THEORY

5.1	Retarded Scalar and Vector Fields	395
5.2 5.3	Expansion of Grad $[V]$, Div $[\overline{F}]$ and Curl $[\overline{F}]$ Dynamical Extension of Green's Formula	397 399
5.4	Uniqueness Theorems for Time-Dependent Fields	405
5.5	The Retarded Potentials of Scalar and Vector Sources	408
5.6	The Gradient, Divergence and Curl of Retarded Potentials	416
5./	The d'Alembertian of the Retarded Potentials	426
5.8	The Gradient and d'Alembertian of the Scalar Point Function	
	$\int \left\{ [\overline{P}]. \operatorname{grad} \frac{1}{r} - \left[\frac{\partial \overline{P}}{\partial t} \right] \cdot \frac{\overline{r}}{\operatorname{cr}^2} \right\} d\tau$	448
5.9	The Divergence, Curl and d'Alembertian of the Vector Point	
	Function $\int \left\{ [\overline{M}] \times \text{grad} \frac{1}{r} - \begin{bmatrix} \overline{\partial} \overline{M} \\ \overline{\partial} t \end{bmatrix} \times \frac{\overline{r}}{cr^2} \right\} d\tau$	451
5.10	The Liénard-Wiechert Potentials	468
5.11	Space and Time Derivatives of the Liénard-Wiechert Potentials	475
5.12	Approximations for the Liénard-Wiechert Potentials and Their	
	Derivatives in Terms of Unretarded Quantities	487
5.13	The Retarded Potentials of an Oscillating Point Doublet with	
	Time-Dependent Orientation	493
5.14	The Retarded Potentials of a Point Whirl of Constant Moment	497
5.15	The Retarded Vector Potential of a Point Whirl of Time-Dependent	
	Orientation	501
5.16	The \overline{E} and \overline{B} Fields of Time-Dependent Doublets and Whirls	509
5.17	The Retarded Densities and Potentials of a Statistically-Regular	505
	Configuration of Point Singlets in Motion	
5 10	Ine Equation of Continuity	514
J.10	Construction of the Macroscopic Density and Potential Functions	
5 10	for Singlet, Doublet and whirl Distributions	524
J.19	The macroscopic Potentials of a Composite Source System	
	The Folarisation Potentials	
	ine Lorentz Gauge	531

FIELD ANALYSIS AND POTENTIAL THEORY

xii

•

Index

681

5.20	Microscopic/Macroscopic Relationships for \overline{E} and \overline{B} Fields within	,
	Volume Distributions of Doublets and Whirls	544
5.21	Maxwell's Equations	553
5.22	The Macroscopic Vector Fields \overline{E} , \overline{D} , \overline{B} , \overline{H}	561

CHAPTER 6

HELMHOLTZ'S FORMULA AND ALLIED TOPICS

6.1	Helmholtz's Equation Helmholtz's Formula	
	Conditions for Uniqueness	575
6.2	Scalar Green's Functions for Helmholtz's Equation	582
6.3 6 4	Vector Green's Functions for the Equation: Curl curl $\vec{F} - \vec{k}^2 \vec{F} = \vec{0}$ Surface (Volume Integral Formulations for Complex Vector Fields	585
6.5	Time-Harmonic Fields and their Representation by Complex	200
	Quantities	597
6.6	Time-Averaged Products of Time-Harmonic Quantities	602
6.7	Uniqueness Criteria for Time-Harmonic Fields	604

CHAPTER 7

EXPONENTIAL POTENTIAL THEORY

7.1	Introduction	607
7.2	The Scalar Exponential Potential and its Derivatives	609
7.3	The Vector Exponential Potential and its Derivatives	617
7.4	The Representation of a Complex Field as the Exponential Potential	
	of Surface and Volume Sources	628
7.5	Equivalent Layers in Scalar Exponential Potential Theory	629
7.6	The Complex Form of Maxwell's Equations	638
7.7	The Macroscopic Fields \overline{E} , \overline{B} , \overline{D} , \overline{H}	641
7.8	The Diffraction Integrals	648
7.9	Introduction to the Auxiliary Potentials	656

APPENDICES

A.1	The Activity Equation for Point Sources	665
A.2	The Linear Momentum Equation for Point Sources	671
A.3	The Angular Momentum Equation for Point Sources	675
Üsefu	Il Transformations	677
Adder	679	