Contents

PR:	EFACI	Ε	xi
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Nature of harmonics	2
	1.3	Importance of the subject	2
	1.4	References	4
2	HAR	MONIC ANALYSIS	5
	2.1	Introduction	5
	2.2	Basic concepts	5
		Periodic functions; Orthogonal functions	
	2.3	Fourier analysis	7
		Fourier series and coefficients; Simplifications resulting from	
		waveform symmetry	
	2.4	Finite interval functions	12
	2.5	Complex form of the Fourier series	14
	2.6	The Fourier transform	15
		Finiteness of energy and power; Convolution	
	2.7	Sampled time functions	22
	2.8	Discrete Fourier transform	23
	2.9	Fast Fourier transform	25
	2.10	Chirp Z transform	28
	2.11	The Nyquist frequency and aliasing	30
	2.12	Window functions	32
		The picket fence; Spectral leakage reduction; Choice of	
		window function; Mainlobe width reduction	
	2.13	References	40
3	HAR	MONIC SOURCES – THE STATIC CONVERTOR	41
	3.1	Introduction	41
	3.2	Large power convertors	42
		Harmonic components of the current waveform; Six-pulse	

related harmonics; Effect of transformer connection; Twelvepulse related harmonics; Higher pulse configurations; Effect of transformer and system impedance; Direct voltage harmonics

	3.3	Medium size convertors	55
	3.4	Low power convertors	71
	3.5	bution of battery chargers Imperfect system conditions	78
		Imperfect a.c. source; D.C. current modulation; Control system imperfections; Firing asymmetry	
	3.6	Modulated phase-control	84
	3.7	Integral cycle control.	90
	3.8	References	92
4	отн	ER HARMONIC SOURCES	93
	4.1	Introduction	93
	4.2	Transformer magnetization non-linearities	93
		Normal excitation characteristics; Determination of the current waveshape; Symmetrical overexcitation; Inrush current harmonics; D.C. magnetization	
	4.3	Rotating machine harmonics	98
		Slot harmonics; Voltage harmonics produced by synchro- nous machines; Voltage harmonics produced by induction motors	
	4.4	Distortion caused by arc-furnaces	104
	4.5	Fluorescent lighting harmonics	106
	4.6	References	109
5	HAR	MONIC EFFECTS	110
		A Within The Power System	110
	5.1	Introduction	110
	5.2	Resonances	110
		Parallel resonance; Series resonance; Effects of resonance on system behaviour	
	5.3	Effects of harmonics on rotating machines	113
	5.4	Effect of harmonics on static power plant	116
	5.5	Harmonic interference with ripple control systems	117

vi

		vii
5.6	Harmonic interference with power system protection	118
2.0	Harmonic problems during fault conditions: Harmonic pro-	110
	blems outside fault conditions	
5.7	Effect of harmonics on consumer equipment.	120
5.8	Effect of harmonic on power measurements	120
	Effect of harmonics on maximum demand meters	
5.9	Effect of harmonic distortion on power factor	122
	B Interference with Communications	123
5 10	Introduction	123
5.11	Simple model of a telephone circuit	123
5.12	Factors influencing interference	125
5.13	Counting to communication circuits	125
2110	Loon induction: Longitudinal electromagnetic induction:	120
	Longitudinal electrostatic induction: Conductive coupling	
5 14	Effect on communication circuits (suscentiveness)	129
0.1.4	Telephone circuit suscentiveness: Harmonic weights: Pso-	12)
	phometric frequency weighting: C-Message weighting: I:T	
	and $kV \cdot T$ products. Telephone circuit balance to earth:	
	Shielding	
5.15	Mitigation techniques	133
5.16	References	134
POW	ER SYSTEM HARMONIC MEASUREMENTS	136
6.1	Introduction	136
6.2	The development of power system harmonic measurements	137
6.3	Filters	139
	Filters for spectrum analysis; Analogue and digital filters	
6.4	Signal averaging	146
6.5	Analogue spectrum and harmonic measurements	149
	Discrete filter analysers; Parallel analysers; Swept frequency	
	analysers; Heterodyne analysers; Time compression analy-	
	sers; Analogue harmonic analysers	
6.6	Digital methods for spectral analysis	156
	Analysers using digital filters; Discrete Fourier transform	
	analysers; Resolution and bandwidth; Time domain averag-	
	ing; Dynamic range and quantizing error; Real time measure-	
	ments using FFT instruments	
6.7	Off-line measurements	160
	Analogue recording; Digital recording	
6.8	The presentation of harmonic data	162
	Displays involving individual harmonics; Displays involving	
	groups of harmonics; Total harmonic distortion; Inter-	
	pretation of harmonic data	
6.9	References	172

6

	٠	٠	٠
v	1	1	1

7	TRA	NSDUCERS AND DATA TRANSMISSION	173
	7.1	Introduction	173
	7.2	Current measurement	174
	7.3	Voltage measurement	176
		The magnetic voltage transformer; Capacitive voltage trans-	
		former; Cascade voltage transformer; Voltage dividers;	
		Amplifier-based systems with capacitive dividers; Hybrid	
		dividers	
	7.4	High voltage probes and clamp-on current transformers	185
	7.5	Unconventional current and voltage transformers	186
		Passive systems; Active systems; Hall effect transducers;	
		Hybrid current transformers; Unconventional voltage	
		transformers	
	7.6	Data transmission	189
		Reduction of electrostatic interference; Reduction of electro-	
		magnetic interference; Signal conditioning and data trans-	
		mission; Pulsed system; Fibre-optic systems	
	7.7	References	197
8	STAN	NDARDS FOR THE LIMITATION AND CONTROL	
	OF F	POWER SYSTEM HARMONICS	199
	8.1	Introduction	199
	8.2	Factors influencing the development of standards for the control	
		of power system harmonics.	200
		The rights of consumers; The establishment of harmonic	
		limits; System design	
	8.3	National harmonic standards	203
		France; West Germany; Sweden; United States; Australia;	
		Finland; New Zealand; United Kingdom	
	8.4	Domestic standards	213
	8.5	References	213
9	HAR	MONIC PENETRATION IN A.C. SYSTEMS	215
	9.1	Introduction	215
	9.2	Harmonic power flow	215
	9.3	Impedance/frequency loci	217
	9.4	Experimental derivation of equivalent harmonic impedances .	219
		On-line non-invasive tests; On-line invasive tests	
	9.5	Application of network analysis to harmonic penetration	221
		Network subdivision; Linear transformation techniques;	
		Frame of reference used in three-phase system modelling;	
		The use of compound admittances; Rules for forming the	
		admittance matrix of simple networks	
	9.6	Modelling of network components	232
		Transmission lines; Maximum values of currents and vol-	

tages along transmission lines; Multiconductor transmission line modelling; Mutually coupled three-phase lines; Consideration of terminal connections; Equivalent PI model of multiconductor transmission line; Skin effect modelling; Shunt elements: Series elements: Single-phase transformers; Modified transformer admittances for harmonic analysis; Synchronous machine models; Primitive admittance model of three-phase transformers; Models for common transformer connections; Load modelling 9.7 267 Requirements of the algorithm for harmonic modelling; Balanced harmonic penetration; Unbalanced harmonic penetration 9.8 Computational requirements of harmonic penetration algorithms 272 Single-phase modelling; Three-phase algorithm; Three-phase harmonic penetration 9.9 Application of the harmonic penetration algorithm. 278 Harmonics generated along transmission lines; Zero sequence harmonics in transmission lines connected to static convertors: Differences in phase voltages; Effect of mutual coupling in double circuits; Harmonic impedances of an interconnected system 9.10 References 293 **10 HARMONIC ELIMINATION . . .** 296 10.1 Purpose of harmonic filters 296 10.2 Definitions 296 10.3 298 10.4 299 Graphic approach; Double tuned filters; Automatically tuned filters 10.5 306 Types of damped filters; Design of damped filters Typical filter configurations 308 10.6 Band pass filtering for 12-pulse convertors 310 10.7 10.8 Filter component properties 312 Capacitors; Inductors 10.9 - 313 Single-tuned filter; Band-pass filter 320 10.11 Alternative ideas for harmonic elimination 320 Magnetic flux compensation; Harmonic injection; D.C. ripple injection 324 10.12 References INDEX · · · 325