Introduction and Early History	1
Weber, J.: MASERS	7
SCHRÖDINGER EQUATION FOR SOLVING MASER PROBLEMS Purcell and Pound: A NUCLEAR SPIN SYSTEM AT NEGATIVE TEMPERATURE Weber, J.: AMPLIFICATION OF MICROWAVE RADIATION BY SUBSTANCES NOT IN	46 50
THERMAL EQUILIBRIUM	52
Masers Employing Gases	
Gordon, Zeiger and Townes: THE MASERNEW TYPE OF MICROWAVE AMPLIFIER, FREQUENCY STANDARD, AND SPECTROMETER	59 70
TECHNIQUES Marcuse, D.: MASER OSCILLATION OBSERVED FROM HCN MASER AT 88.5 kMc Shimoda, Wang, Townes: FURTHER ASPECTS OF THE THEORY OF THE MASER Kontorovich and Prokhorov: NONLINEAR EFFECTS OF THE INTERACTION OF	83 95 96
RESONANCE FIELDS IN THE MOLECULAR GENERATOR AND AMPLIFIER Venkates and Strandberg: OPERATING CHARACTERISTICS OF A MOLECULAR-	112
BEAM MASER	115
AMMONIA MASER	119
Bonanomi, Herrmann, DePrins and Kartaschoff: TWIN CAVITY FOR NH ₃ MASER Wells, W. H.: MASER OSCILLATION WITH ONE BEAM THROUGH TWO CAVITIES Reder and Bickart: ADVANTAGE OF A CASCADED-CAVITY NH ₃ MASER OVER THE	120 123
SINGLE CAVITY MASER	127
DePrins: N ¹⁵ H ₃ DOUBLE-BEAM MASER AS A PRIMARY FREQUENCY STANDARD Barnes, Allan, Wainwright: THE AMMONIA BEAM MASER AS A STANDARD OF	129
FREQUENCY.	133
Helmer and Jacobus: FOCUSING MOLECULAR BEAMS OF NH3	138
Giordmaine and Wang: MOLECULAR BEAM FORMATION BY LONG PARALLEL TUBES Townes, C. H.: SENSITIVITY OF MICROWAVE SPECTROMETERS USING MASER	144
TECHNIQUES	153
Beers, Y.: THEORY OF THE CAVITY MICROWAVE SPECTROMETER AND MOLECULAR FREQUENCY STANDARD	156
Beers, Y.: COMPARISON OF THE SENSITIVITIES OF THE BEAM MASER AND	
CAVITY ABSORPTION SPECTROMETERS Thaddeus, Krisher, Loubser: HYPERFINE STRUCTURE IN THE MICROWAVE SPECTRUM OF HIDO, HDS, CH ₂ O AND CHDO: BEAM-MASER SPECTROSCOPY	164
ON ASYMMETRIC-TOP MOLECULES	169
BY A NEW HIGH-RESOLUTION MICROWAVE SPECTROMETER	186
Cedarholm, J. P.: A NEW EXPERIMENTAL TEST OF SPECIAL RELATIVITY	197
Holuj, Daams and Kalra: HIGH RESOLUTION AMMONIA (N ¹⁴ H ₅) MASER	199
Gordy and Cowan: PROPOSED MOLECULAR AMPLIFIER AND COHERENT GENERATOR FOR MILLIMETER AND SUBMILLIMETER WAVES	202
Solid State Masers	
General Principles and Development of Amplifiers	
Bloembergen, N.: PROPOSAL FOR A NEW TYPE SOLID STATE MASER	205

Scovil, Feher, and Seidel: OPERATION OF A SOLID STATE MASER	209
Makhov, Kikuchi, Lambe, and Terhune: MASER ACTION IN RUBY	211
Jelley and Cooper: AN OPERATIONAL RUBY MASER FOR OBSERVATIONS AT 21	
CENTIMETERS WITH A 60-FOOT RADIO TELESCOPE	212
Autler and McAvoy: 21-CENTIMETER SOLID-STATE MASER	222
Morris, Kyhl, and Strandberg: A TUNABLE MASER AMPLIFIER WITH LARGE	999
BANDWIDTHArams and Okwit: PACKAGED TUNABLE L-BAND MASER SYSTEM	223 224
Wessel, G. K.: A UHF RUBY MASER	233
DeGrasse, Kostelnick, and Scovil: THE DUAL CHANNEL 2390-Mc TRAVELING-WAVE	400
MASER	234
DeGrasse, Schulz, Dubois, and Scovil: THREE-LEVEL SOLID-STATE TRAVELING	201
WAVE MASER	245
O'Meara, T. R.: THE COUPLED-CAVITY TRANSMISSION MASER-ANALYSIS	275
Goodwin, Kiefer, and Moss: THE COUPLED-CAVITY TRANSMISSION MASER-	
ENGINEERING DESIGN	288
Okwit and Smith: TRAVELING-WAVE MASER WITH INSTANTANEOUS BANDWIDTHS	
IN EXCESS OF 100 Mc	298
Okwit and Smith: PACKAGED ELECTRONICALLY TUNABLE S-BAND TRAVELING-	
WAVE MASER SYSTEM	299
DeGruyl, Okwit, and Smith: A C-BAND MASER DICKE-RADIOMETER SYSTEM	313
Arams and Peyton: TUNABLE MILLIMETER TRAVELING-WAVE MASER OPERATION	321
Cook, Cross, Bair, and Terhune: A LOW-NOISE X-BAND RADIOMETER USING	
MASER	322
Arams, F. R.: LOW-FIELD X-BAND RUBY MASER	333
King and Terhune: OPERATION OF A ZERO-FIELD X-BAND MASER	334
Bogle, G. S.: CROSS-RELAXATION MASERS	335
Bogle and Symmons: ZERO-FIELD MASERS	353
Goodwin, F. E.: DUPLEXING A SOLID-STATE RUBY MASER IN AN X-BAND RADAR	373
SYSTEMGoodwin, F. E.: MASER ACTION IN EMERALD	374
Higa and Clauss: DUAL-CAVITY MASER USED IN MARS RADAR EXPERIMENT	375
Senf, Goodwin, Kiefer, and Cowans: MASERS FOR RADAR SYSTEMS APPLICATIONS	378
Foner, Momo, and Mayer: MULTILEVEL PULSED-FIELD MASER FOR GENERATION	0.0
OF HIGH FREQUENCIES	386
Foner and Momo: CW MILLIMETER WAVE MASER USING Fe ³⁺ in TiO ₂	389
Momo, Myers, and Foner: PULSED FIELD MILLIMETER WAVE MASER	391
Huges and Kremenek: 70-Gc MASER	392
Carter, D. L.: A CW SOLID STATE, PUSH-PULL MASER IN THE 5 TO 6	
MILLIMETER WAVELENGTH REGION	393
Friedman and Nagy: IRON SAPPHIRE MASER WITH NO MAGNETIC FIELD	395
Nagy and Freidman: A NO-FIELD POWDER MASER	396
Kornienko and Prokhorov: A PARAMAGNETIC AMPLIFIER AND GENERATOR, USING	
Fe ³⁺ IONS IN CORUNDUM	397
Schimitschek, Schwarz, and Turnbull: FOUR-LEVEL K-BAND MASER	398
Jelley, J. V.: THE POTENTIALITIES AND PRESENT STATUS OF MASERS AND	
PARAMETRIC AMPLIFIERS IN RADIO ASTRONOMY	399
Nilsen, W. G.: OPERATION OF A TRAVELING-WAVE MASER IN A TRANSVERSE	44.5
FIELD SUPERCONDUCTING ELECTROMAGNET	415
Hughes, W. E.: MASER OPERATION AT 96 kMc WITH PUMP AT 65 kMc	417
Devor, D'Haenens, and Asawa: MICROWAVE GENERATION IN RUBY DUE TO POPULATION INVERSION PRODUCED BY OPTICAL ABSORPTION	418
POPULATION INVERSION PRODUCED BY OPTICAL ADSORPTION	410
Phonon Masers	
Tucker, E.B.: ATTENUATION OF LONGITUDINAL ULTRASONIC VIBRATIONS BY	
SPIN-PHONON COUPLING IN RUBY	42 3
Tucker, E. B.: AMPLIFICATION OF 9.3 kMc/sec ULTRASONIC PULSES BY	400
MASER ACTION IN RUBY	42 6

Techniques for Solid State Masers

Arams and Krayer: DESIGN CONSIDERATIONS FOR CIRCULATOR MASER	
SYSTEMS	429
Autler, S. H.: PROPOSAL FOR A MASER-AMPLIFIER SYSTEM WITHOUT NON-RECIPROCAL ELEMENTS	431
Copper, B. F. C.: USE OF A Y-TYPE CIRCULATOR SWITCH WITH A	431
21-CENTIMETER MASER RADIOMETER	433
Cross, L. G.: SILVERED RUBY MASER CAVITY	435
Culshaw, W.: RESONATORS FOR MILLIMETER AND SUBMILLIMETER	
WAVELENGTHS	436
Degruyl and Heinz: HELIUM-COOLED Y-JUNCTION FERRITE CIRCULATOR	
SWITCH	446
Okwit et al.: SUPERCONDUCTING-SOLENOID TRAVELING-WAVE MASER SYSTEM	447
Goodwin, F. E.: BROAD-BAND IMPEDANCE MATCHING INTO DIELECTRIC-FILLED WAVEGUIDES	448
	440
Relaxation Phenomena	
Bloembergen, N.: ELECTRON SPIN AND PHONON EQUILIBRIUM IN MASERS	453
Bloembergen, Shapiro, Pershan, and Artman: CROSS-RELAXATION IN SPIN	
SYSTEMS	454
Pershan, P.S.: CROSS RELAXATION IN Lif	469
Philippot, J.: IRREVERSIBILITY IN INTERACTING SPIN SYSTEMS	477
Hirono and Motokazu: ON THE THEORY OF CROSS RELAXATION IN MASER	400
MATERIALS	482
Ahern, S. A.: CROSS-RELAXATION PHENOMENA IN SOLID STATE MASERS Mims and McGee: SPIN-SPIN ENERGY TRANSFER AND THE OPERATION OF	493
THREE-LEVEL MASERS	497
Geusic, J. E.: HARMONIC SPIN COUPLING IN RUBY	498
Geusic, Schulz, DuBois, DeGrasse, and Scovil: THREE-LEVEL SPIN	
REFRIGERATION AND MASER ACTION AT 1500 Mc/sec	500
Forrester and Mims: SEESAW MASER OPERATION	502
Hoskins, R. H.: SPIN-LEVEL INVERSION AND SPIN-TEMPERATURE MIXING IN	
RUBY	506
Roberts, Burgess, and Tenney: CROSS RELAXATION AND CONCENTRATION EFFECTS IN RUBY	508
Arams, F. R.: MASER OPERATION AT SIGNAL FREQUENCIES HIGHER THAN	200
PUMP FREQUENCY	512
Arams, F. R.: MASER OPERATION WITH SIGNAL FREQUENCY HIGHER THAN	
PUMP FREQUENCY	517
Yatsiv: ROLE OF DOUBLE-QUANTUM TRANSITIONS IN MASERS	518
Arams and Birnbaum: MASER ACTION IN RUBY BY OFF-RESONANCE PUMPING	525
Collins, Kyhl, and Strandberg: SPIN-LATTICE RELAXATION FROM STATE OF	F0F
NEGATIVE SUSCEPTIBILITYBölger and Robinson: PARAMAGNETIC RELAXATION RATES DETERMINED BY	527
PULSED DOUBLE RESONANCE EXPERIMENTS	529
Bölger, B.: ON THE POWER TRANSFER BETWEEN PARAMAGNETIC SPINS AND	020
CRYSTAL LATTICE I	538
Feng and Bloembergen: RELAXATION TIME MEASUREMENTS IN RUBY BY A dc	
MAGNETIZATION TECHNIQUE	552
Gill, J. C.: SPIN-LATTICE RELAXATION OF CHROMIUM IONS IN RUBY	557
Pace, Sampson, and Thorp: SPIN-LATTICE RELAXATION TIMES IN RUBY AT	
34.6 Gc/sec	568
CHROMIUM-DOPED RUTILE AT 34.6 Gc/sec	576
,	510
Materials, Preparation, Spectra	
VanUitert: SOLID STATE MASER MATERIALS	581
Schulz and DuBois: PARAMAGNETIC SPECTRA OF SUBSTITUTED	
SAPPHIRESPART I: RUBY	604

Schulz, DuBois, Scovil, and DeGrasse: USE OF ACTIVE MATERIAL IN	
THREE-LEVEL SOLID STATE MASERS	630
Geusic, Peter, Schulz, and DuBois: PARAMAGNETIC RESONANCE SPECTRUM OF	
Cr ⁺⁺⁺ IN EMERALD	648
Bleaney, B.: A NEW CLASS OF MATERIALS FOR BLOEMBERGEN-TYPE MASERS	654
Bleaney, B.: THE SPIN HAMILTONIAN OF A Γ_8 QUARTET	657
Carson, J. W.: ZERO-FIELD SPLITTING OF THE Cr ²⁺ GROUND STATE IN YGa	
AND YA1 GARNET	661
Chester, P. F.: CROSS-DOPING AGENTS FOR RUTILE MASERS	662
Chester, P. F.: ELECTRON SPIN RESONANCE IN SEMICONDUCTING RUTILE	665
Gerritsen, Harrison, and Lewis: CHROMIUM-DOPED TITANIA AS A MASER	
MATERIAL	669
Hoskins, R. H.: TWO-LEVEL MASER MATERIALS	675
VanUitert, Swanekamp, and Preziosi: SINGLE-CRYSTAL MOLYBDATES FOR	
RESONANCE AND EMISSION STUDIES	676
Vincow, G.: PARAMAGNETIC RESONANCE SPECTRA OF f.3 IONS IN A	
CUBIC SITE	677
Nassau and Vanuitert: PREPARATION OF LARGE CALCIUM-TUNGSTATE	
CRYSTAL CONTAINING PARAMAGNETIC IONS FOR MASER APPLICATIONS	680
White, E. A. D.: A NEW TECHNIQUE FOR THE PRODUCTION OF SYNTHETIC	
CORUNDUM	681
VanUitert and Preziosi: ZINC TUNGSTATES FOR MICROWAVE MASER	
APPLICATIONS	683
Vanuitert and Soden: SINGLE CRYSTAL TUNGSTATES FOR RESONANCE AND	
EMISSION STUDIES	684
Papers on Solid State Masers Not Listed Elsewhere	
Anderson, P.W.: THE REACTION FIELD AND ITS USE IN SOME SOLID-STATE	
AMPLIFIERS	688
Barker, W. A.: THERMODYNAMICS AND STATISTICAL MECHANICS OF A	
THREE-LEVEL MASER	693
Keating and Barker: CALCULATION OF THE NORMALIZED POPULATION	
DISTRIBUTION OF MULTILEVEL MASER SYSTEMS BY THE	
INSPECTION METHOD	698
Bloom, S.: EFFECTS OF RADIATION DAMPING ON SPIN DYNAMICS	715
Clogston, A. M.: SUSCEPTIBILITY OF THE THREE-LEVEL MASER	721
Salzberg, B.: MASERS AND REACTANCE AMPLIFIERS BASIC POWER	
RELATIONS	728
Scovil, Schulz, and DuBois: THREE-LEVEL MASERS AS HEAT ENGINES	729
Barnes, F. S.: MASERS AND MILLIMETER WAVES	731
Troup, G.: THE OPTIMUM LINE WIDTH FOR THE TRANSITION USED IN A	
REFLECTION CAVITY MASER AMPLIFIER	736
Kyhl, McFarlane, and Strandberg: NEGATIVE L AND C IN SOLID STATE MASERS	742
Townes, C.H.: COMMENTS ON FREQUENCY-PULLING OF MASER OSCILLATORS.	758
Yariv, A.: SPONTANEOUS EMISSION FROM AN INVERTED SPIN SYSTEM	759
Feher, Gordon, Buehler, Gere, and Thurmond: SPONTANEOUS EMISSION OF	
RADIATION FROM AN ELECTRON SPIN SYSTEM	761
Greifinger and Birnbaum: SUPER-RADIATION AND SUPER-REGENERATION	763
Kemp, J. C.: FIELD-SWEPT MASER OSCILLATION	769
Kemp, J. C.: THEORY OF MASER OSCILLATION	772
King, J. E.: A DOUBLE PUMPING SCHEME APPLICABLE TO LOW-FREQUENCY	
MASERS	774
Makhov, G.: ON THE PROBLEM OF PULSED OSCILLATIONS IN RUBY MASER	775
Makhov, Cross, Terhune, and Lambe: EFFECT OF NUCLEAR POLARIZATION ON	110
THE BEHAVIOR OF SOLID STATE MASERS	778
Saito, F.: TRANSIENT PHENOMENA IN RUBY MASER	780
Szabo, A.: RELAXATION TIME AND MULTIPLE PUMPING EFFECTS IN MASERS	782
Terhune, Lambe, Makhov, and Cross: ELECTRON NUCLEAR DOUBLE RESONANCE	104
EXPERIMENTS WITH RUBY	787
Thorp, Pace, and Sampson: ADIABATIC RAPID PASSAGE IN RUBY AT 8mm	101
WAVE-LENGTHS	790
WAYE-LENUID:	190

Wessel: RECOVERY TECHNIQUE FOR SATURATED MASERS	802
Hsu and Tittel: OPTICAL PUMPING OF MICROWAVE MASERS	
Ready and Chen: OPTICAL PUMPING OF MASERS USING LASER OUTPUT	813
Noise, Theory and Measurements	
McWhorter and Arams: SYSTEM-NOISE MEASUREMENT OF A SOLID-STATE	
MASER	815
DeGrasse, Hogy, Ohm and Scovil: ULTRA-LOW-NOISE MEASUREMENTS USING	
A HORN REFLECTOR ANTENNA AND A TRAVELING-WAVE MASER	816
Pound, R. V.: SPONTANEOUS EMISSION AND THE NOISE FIGURE OF MASER	
AMPLIFIERS.	817
Shimoda, Takahasi, and Townes: FLUCTUATIONS IN AMPLIFICATION OF	
QUANTA WITH APPLICATION TO MASER AMPLIFIERS	826
Gordon and White: NOISE IN MASER AMPLIFIERS: THEORY AND EXPERIMENT	842