CONTENTS

1	HISTORICAL DEVELOPMENT OF THE LASER ANEMOMETER				
	1.1	Introduction	1		
	1.2	The first measurement of laser Doppler shift	3		
	1.3	The single-beam laser anemometer	5		
	1.4	Alignment of the laser anemometer	7		
	1.5	Standard dual-beam laser anemometer	8		
	1.6	Self-aligning dual-beam laser anemometer	9		
	1.7	Fringe model of the laser anemometer	10		
2	RELATED PHYSICAL PHENOMENA				
	2.1	Introduction	12		
	2.2	Principles of the laser	12		
	2.3	Doppler shift caused by a moving scattering			
		centre	20		
	2.4	Optical mixing	23		
	2.5	The detection of light	26		
	2.6	Intensity of the scattered light	33		
3	PRINCIPLES OF OPERATION OF LASER DOPPLER				
	VE	LOCIMETERS			
	3.1	Introduction	37		
	3.2	Simplified theory of laser anemometers			
		based on the Doppler shift of the			
		scattered radiation	38		
		Fringe model	42		
	3.4	Filter model	44		
	3.5	Detailed theory of laser anemometers	47		
	3.6	A reference beam system	60		
		The sampling volume	63		
,		Determination of the velocity vector	64		
	3.9		68		
		Doppler uncertainty	74		
	3.11	Equivalence of laser velocimeter models	79		

vii

4	SIGNAL	PROCESSING			
	4.1 In	ntroduction	84		
	4.2 Fi	requency-domain signal analysis	85		
		ime-domain analysis	88		
		prrelation methods	95		
		irect optical methods for signal analysis	98		
		ome practical aspects of velocity tracking	100		
		ethods for improving the signal to noise	100		
	4. / 14	ratio	104		
		racio	104		
5	5 MEASUREMENT OF TURBULENCE PARAMETERS				
-		ntroduction	106		
		efinition of turbulence parameters	108		
		easurement of turbulence velocities	109		
		easurement of Reynolds stresses	112		
		easurement of turbulence spectra easurement of turbulence correlation	115		
			117		
		easurement close to the wall of a pipe	118		
	5.8 Ve	elocity profiles and turbulence intensities			
		in Newtonian and non-Newtonian pipe flow	119		
6		MICNIC OF LACED ANTWONTED			
0		ATIONS OF LASER ANEMOMETERS	100		
		ntroduction	122		
		ses of laser anemometers in wind tunnels	123		
		tmospheric wind velocity measurements	125		
		bise in systems	131		
	6.5 E:	ffects of atmospheric turbulence	132		
7	nondi	27 Deminstrian of emotion 2.20	133		
Appendix 3A Derivation of equation 3.26			100		
Ap	pendix 1	3B Derivation of the following identity:			
		$2 < \Sigma \Sigma a_m^2 a_n^2 > = < \Sigma a_n^2 >^2$			
		m <n 11<="" td=""><td></td></n>			
		m=1	135		
Ap	pendix 3	3C Calculation of the probability			
-	-	distribution of the distance ε			
		between two points inside a			
		circle of unit radius	136		
αA	pendix 1		138		
	pendix 1				
£.		processes and their power spectra	140		
Ap	pendix 1		143		
<u>P</u>	·				
Re	ference	S	146		
Index			159		
			-		