Contents

1.	Introduction. Laser Beam Propagation in the Atmosphere	•
	By J. W. Strohbehn.	1
	1.1 A Brief History	3
	1.2 Organization	4
	References	6
2.	The Classical Theory of Wave Propagation in a Turbulent Medium	
	By S. F. Clifford (With 9 Figures).	9
	2.1 Description of the Atmosphere	10
	2.1.1 Atmospheric Refractive Index	10
	2.1.2 The Role of Atmospheric Turbulence	11
	2.1.3 The Turbulence Model of Refractivity Fluctuations	12
	2.1.4 Stationary Random Functions	14
	2.1.5 The Power Spectral Density of the Refractive Index	
	Fluctuations	16
	2.1.6 Behavior of C_{π}^2 in the Open Atmosphere \ldots \ldots	20
	2.2 The "Classical" Theory of Optical Propagation	26
	2.2.1 The Wave Equation for Optical Propagation.	26
	2.2.2 Solution by the Method of Small Perturbations	27
	2.2.3 Covariance and Structure Functions for Kolmogorov	
	Turbulence	34
	2.2.4 A Qualitative Interpretation of the First-Order	
	Scattering Theory	37
	2.3 The Early Experimental Work	39
	References	4 1
3.	Modern Theories in the Propagation of Optical Waves	
	in a Turbulent Medium. By J. W. Strohbehn (With 18 Figures)	45
	3.1 Overview	45
	3.2 The Diagram Method	52
	3.3 The Markov Approximation	59
	3.3.1 The Derivation for the Mean Field	60
	3.3.2 The Derivation for the Mutual Coherence Function	62
	3.3.3 The Derivation of Higher Order Moments.	64
	3.4 The Local Method of Small Perturbations (LMSP)	67
	3.5 Heuristic Theories for the Saturation Region	70

VIII Contents

3.6 Results	. 83
3.6.1 The Mean Field, $u(r)$. 84
3.6.2 The Mutual Coherence Function	. 85
3.6.3 The Fourth-Order Coherence Function	. 86
3.6.4 The Probability Distribution of the Irradiance	. 97
References	. 104

4.	Similarity Relations and Their Experimental Verification for Strong	
	Intensity Fluctuations of Laser Radiation. By M. E. Gracheva,	
	A. S. Gurvich, S. S. Kashkarov, and VI. V. Pokasov	
	Translated and adapted by J. W. Strohbehn (With 13 Figures)	107
	4.1 Background	107
	4.2 Derivation of the Similarity Formulas	108
	4.2.1 The Fourth-Order Coherence Function	108
	4.2.2 The Similarity Relations	109
	4.2.3 Physical Meaning of L_T and l_T .	109
	4.2.4 Comparison with Experiment	110
	4.2.5 Similarity Relations for the Probability	
	Distribution and Moments	111
	4.2.6 Limitations in Comparing Theory and Experiment	112
	4.3 The Experimental Plan and Measurement Procedures	112
	4.4 Experimental Results and Their Discussion	114
	4.4.1 The Log Normal vs Rayleigh Probability Distribution.	114
	4.4.2 The Dependence of the Probability Distribution on β_{1}^{2}	116
	4.4.3 The Normalized Variance β^2	116
	4.4.4 The Normalized Covariance Function	119
	4.4.5 Spectral Measurements	122

4.4.5 Spectral Measurements	
4.5 Conclusions	
References	

5. The Beam Wave Case and Remote Sensing By A. Ishimaru (With 8 Figures)

By A. Ishimaru (With 8 Figures)
5.1 Weak Fluctuation Theory
5.1.1 The Variance of the Log Amplitude Fluctuations 134
5.1.2 Average Intensity and Beam Spread
5.1.3 Angle of Arrival
5.1.4 Temporal Frequency Spectra
5.2 Strong Fluctuation Theory
5.2.1 Strong Fluctuation Theory for the Coherence Function 142
5.2.2 Temporal Frequency Spectra
5.2.3 Two-Frequency Correlation Function
5.2.4 Fourth-Order Moments
5.2.5 Short- and Long-Term Beam Spreads

.

	5.3 Optical Remote Sensing	156
	5.3.1 Remote Sensing of the Average Structure Constant C_n	
	Over the Path \ldots	156
	5.3.2 Remote Sensing of the Average Wind Velocity	
	Across the Path \ldots \ldots \ldots \ldots \ldots	157
	Temporal Frequency Spectrum Method	158
	Time Delay Method	161
	Correlation Slope Method	162
	5.3.3 Remote Sensing of the Profile of the Structure Constant	-
	and Wind Velocity Along the Propagation Path	162
	Least Square Estimation	163
	Statistical Inversion Method	165
	Baalaus Cilbert Inversion Technique	147
	Backus-Gilbert Inversion Technique	10/
	5.3.4 Other Remote Sensing Techniques	168
	Crossed Beam Method	168
	Spatially Filtered Aperture Technique	168
	References	168
6.	Imaging and Optical Communication Through Atmospheric Turbulence	
	By J. H. Shapiro (With 15 Figures)	171
	6.1 Propagation Model	. 172
	6.1.1 Extended Huygens-Fresnel Principle	. 173
	6.1.2 Green's Function Statistics	. 177
	6.1.3 Normal Mode Decomposition	. 180
	6.2 Imaging Applications	183
	6.2.1 Propagation Model for Incoherent Sources	183
	6.2.2 Thin Long Imaging	195
	6.2.2 Interforemetric Imaging	100
	6.2.3 Interferometric imaging	, 100
	6.2.4 Phase-Compensated Imaging	, 193
	6.2.5 Modal Theory of Optimum Imaging	. 196
	6.3 Communication Applications.	, 198
	6.3.1 Earth-Space Propagation Channel	. 199
	6.3.2 Statistical Models for Optical Detection	. 202
	6.3.3 Diffraction-Limited Reception	. 205
	6.3.4 Diversity Reception	. 213
	6.3.5 Reciprocity Pointing	217
	References	219
		. 217
7.	Thermal Blooming in the Atmosphere	
	By J. L. Walsh and P. B. Ulrich (With 15 Figures).	223
	71 An Overview	224
	711 An Order of Magnitude Fetimate	224
	7.1.1 All Older of Magnitude Estimate	. <u>4</u> 47 777
	7.1.2 Overview of Our Treatment of Thermal Blooming	. 221
	1.1.5 Architecture of Thermal Blooming	. 228
	Initial Parameters and Method of Approach	. 228
	Nature of the Resulting Solutions	. 229

X Contents

7	7.2 E	lectromagnetic Theory	230
	7.	2.1 The Electromagnetic Wave Equation	230
	7.	2.2 Scalar Wave Equation for Paraxial Beams	232
	7	2.3 Gaussian Beam Modes in a Uniform Medium	233
	7.	.2.4 Geometric Optics	235
	- 7.	2.5 Scalar Diffraction Theory in a Uniform Medium	236
	7.	.2.6 Pasted Phase Approximation	239
7	.3 F	luid Mechanics	244
	7.	3.1 Partial Differential Equation for the Density	
		Variations in an Ideal Gas	245
		Stationary Medium	245
		Uniformly Flowing Medium	246
	7.	3.2 Methods of Solution for the Density	247
		Taylor Expansion for Early Time Behavior	248
		Late Time Behavior	250
		Uniform Transverse Flow at Late Times	250
	7.	.3.3 Formal Solution for a One-Dimensional Heating Profile.	251
		Steady Heating Turned on at $t=0$	251
		Heating with a Multiplicative Time Dependence	253
	7.	.3.4 Formal Solutions for Heating in a Cylindrical Geometry	256
		Hankel Transform Solution for the Uniform Beam	
		Turned on at $t=0$	256
		Green's Function for the Uniform Beam Turned on at $t=0$	257
	7.	3.5 Representative Solutions in a Slab Geometry	258
		Parabolic Slab in a Transverse Flow	258
		Gaussian Beam Turned on at $t=0$	259
		Uniform Slab Turned on at $t=0$	259
		Parabolic Slab Turned on at $t=0$	262
	7.	.3.6 Representative Solutions in a Cylindrical Geometry	264
		Gaussian Beam-Early Time	264
		Gaussian Beam in a Transverse Flow	265
		Gaussian Beam Turned on at $t=0$	265
		Uniform Beam of Radius <i>a</i> Turned on at $t=0$	267
		Parabolic Heating Profile Turned on at $t=0$	268
	7.	.3.7 Repetitive Pulses	270
	7.	3.8 Absorption with a Time Delay in Transfer to	
		Kinetic Energy	271
	7.	.3.9 Electrostrictive Effects	273
-7	.4 A	pproximate Analytical Solutions.	276
	7.	4.1 General Solutions in the Geometric Optics Approximation	277
		Ray Trajectories for Paraxial Beams	277
		Intensity Variation Along the Rays	278
	7.	4.2 Example of a Gaussian Slab	280
	7.	4.3 Intensity Variation for Collimated Beams	283

7.4.4	Geometric Optics Treatment of Focused Gaussian Beams .	284
	Case of Steady Heating	. 286
	Early Time Dependence	287
7.4.5	Wave Optics Perturbation Theory	288
	Basic Formulation	288
	Application to a Gaussian Beam	289
7.4.6	Pasted Phase Approximation	291
7.5 Meth	odology for Computer Solution of Blooming Problems	294
7.5.1	Numerical Techniques	295
	Explicit Algorithm	298
	Implicit Algorithm	299
	Combined Implicit and Explicit	301
	Fast-Fourier Transform Solutions	301
	Integral Methods	303
7.5.2	Improvement of Computational Efficiency	303
	Nonadaptive Coordinate System	304
	Removal of the Nonlinear Phase	306
	Adaptive Coordinate Systems	307
7.5.3	Computer Results	308
	Early Time Regime	308
	Transient Regime	309
	Multiple Pulses	312
	Steady-State Regime	314
Annendix	Properties of Integral Transforms	316
A.1 F	Sourier Transforms	316
A 2 F	Jankel Transforms	317
Reference	e	210
110101010000		. 510
Subject Index	K 	321