Contents

Floot	tranic Structure and Padiative Transitions of Excimer Systems	
By N	I. Krauss and F.H. Mies (With 16 Figures)	•
2.1	Rare Gas Dimers: A Rydberg Example	
	2.1.1 Dimer Ions	
	2.1.2 Ground State	•
	2.1.3 Rydberg States	•
	2.1.4 Observed Spectroscopy	•
2.2	Rare Gas-Halides: Ion-Pair Excimers	•
	2.2.1 The Ground State	•
	2.2.2 The Ion-Pair Excited States	•
	2.2.3 Rydberg States	•
	2.2.4 Observed Spectra	•
2.3	Rare Gas + Group VI: Valence and Ion-Pair Excimers	•
	2.3.1 Valence States	•
	2.3.2 Ion-Pair States	•
		·
2.4	Rare Gas + Group IV: Analogous to Group VI	·
2.5	Rare Gas + Alkali: An Effective One-Electron Interaction	·
2.6	Rare Gas+Group II: Closed Shell and Sub-Shell	٠
2.7	Rare Gas + Group III and V	•
2.8	Group II + Group II: Covalent Excimers	·
	2.8.1 Valence and Ion Pair States	·
	2.8.2 Rydberg States	•
2.0		•
2.9	Delystomic Excimers: Ion Deir Clusters and Triatomic Metals	•
2.10	Folyatoline Exeminers, 1011-Fair Clusters and Thatoline Metals	·
2.11	2 11 1 Cross Section for Steenly Penulsive Potentials & <1	•
	2.11.1 Cross-Section for Weak Lower State Potentials: $\delta \gg 1$	•
2 12	2.11.2 Cross-Section for weak Lower State Foundation $U_{t'} \gg 1$	•
2.12	I otal Exciner Gain, including rinal State Absorption	·

3.	The	Rare Gas Excimers. By M.V. McCusker (With 13 Figures)	47
	3.1	Kinetics in the Pure Rare Gases	48
		3.1.1 Excimer Decay Mechanisms	50
		3.1.2 Laser Kinetics Experiments	54
		3.1.3 Prognosis	56
	3.2	The Rare Gas-Oxide Laser	57
		3.2.1 The Atoms of Group VI–A	58
		3.2.2 The Mechanisms for Populating the Upper Levels	61
		3.2.3 Photolytic Pumping	63
		3.2.4 The Absorptions	66
	3.3	The Homonuclear Halogens	67
		3.3.1 Spectroscopic Features: Bound-to-Bound Transitions	67
		3.3.2 Halogen Spectra and Identification	69
		3.3.3 Laser Demonstrations	72
		3.3.4 Homonuclear Halogen Kinetics	74
		3.3.5 The Production of the Upper States	77
		3.3.6 Extraction Efficiency	80
		3.3.7 Photolytic Pumping	81
		3.3.8 The Fluorescence Yields	82
		3.3.9 Prognosis	82
	Refe	\mathbf{rences}	83
A	Daw	Cas Unlogen Examples Dy Ch & Dray (With & Figures)	07
· • .		Spectroscopy	07
	4.1	Pagetion Vinetics	00
	4.2	A 2.1 Formation and Quanching of Para Cas Halidas	90
		4.2.1 Formation and Quenching of Rate Cas Handes	102
		4.2.2 Kinetics of Para Gas Mixtures	102
	12	4.2.5 Killetics of Kale Cas Mixtures	110
	4.5 1 1	Discharge Pumped Lasers	116
	4.4	A 1 Discharge Physics	116
		4.4.1 Discharge Flysics	110
		4.4.2 Electron Beam Stabilized Discharges	110
	15	4.4.5 Available Discharges	122
	4.5 Dofe		120
	Rele		150
5.	Met	al Vapor Excimers. By A. Gallagher (With 17 Figures)	135
	5.1	Optical Properties	136
		5.1.1 Vibrational-Rotational Population Distributions in High-	
		Pressure Gases	136
		5.1.2 Thermodynamic Relations Between Absorption and	
		Emission	138
		5.1.3 Applications of the Classical Franck-Condon Principle	141
		5.1.4 Homogeneous Broadening	143

5.2	Excimer Systems
	5.2.1 Group I–VIII Excimers
	A–X Bands
	Collision-Induced Excimer Bands
	5.2.2 Group II–VIII Excimers
	5.2.3 Group III–VIII Excimers
	5.2.4 Group I–II Excimers
	5.2.5 Group II–II Excimers
	Mg_2
	Cd-Hg
	Hg_2
	5.2.6 Group III–II Excimers
5.3	Excitation Methods and Efficiency
Ref	erences
Refe App By (erences
Refe App By 0 6.1	erences
App By 0 6.1 6.2	erences
App By 0 6.1 6.2 6.3	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180
App By 0 6.1 6.2 6.3 6.4	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183
App By 0 6.1 6.2 6.3 6.4 6.5	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 186
App By 6 6.1 6.2 6.3 6.4 6.5 6.6	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 186 Conclusion 187
App By 6 6.1 6.2 6.3 6.4 6.5 6.6 Refe	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 186 Conclusion 187 erences 187
Refe App By 0 6.1 6.2 6.3 6.4 6.5 6.6 Refe	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 186 Conclusion 187 erences 187
Refe App By 0 6.1 6.2 6.3 6.4 6.5 6.6 Refe	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 187 erences 187
Refe App By 0 6.1 6.2 6.3 6.4 6.5 6.6 Refe abject	erences 172 lications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 186 Conclusion 187 erences 187 t-Relevant Papers Published in Applied Physics 189
Refe App By 0 6.1 6.2 6.3 6.4 6.5 6.6 Refe ubject	erences 172 Jications of Excimer Systems 175 Ch. K. Rhodes and P. W. Hoff (With 3 Figures) 175 Introductory Remarks 175 Photolytic Excitation of Laser Media 176 Short Wavelength Generation 180 Studies of High Lying Electronic States 183 Isotope Separation 186 Conclusion 187 erences 187 t-Relevant Papers Published in Applied Physics 189 t Index 191