Contents

LIST OF PARTICIPANTS	V
DIRECTORS' NOTE	ix
EDITORS' NOTE	x
INTRODUCTORY REMARKS R. M. Sillitto	1
QUANTUM ELECTRODYNAMICS T. W. B. Kibble	
	11 22 26
4. Quantization of the Electromagnetic Field	
QUANTUM THEORY OF COHERENCE R. J. Glauber	
 Quantum Theory Intensity and Coincidence Measurements Coherence Coherent States The P-representation 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PHOTON STATISTICS E. R. Pike	
 Introduction The Detection of a Light Field Special Fields Yhoton Statistics of Scattered Laser Light. 	127 138 146 162

CONTENTS

QUANTUM-CLASSICAL CORRESPONDENCE FOR STOCHASTIC PROCESSES

W. H. LOUISELL

1.	Review of Quantum Mechanics	••	••	••	••		177
2.	Quantum Theory of Damping	••	••	••	••	••	184
3.	Quantum-Classical Correspondence		••	••	••	••	191
4.	Rotating Wave van der Pol Oscillator			••		••	197

THE SEMICLASSICAL AND QUANTUM THEORY OF THE LASER

H. HAKEN

1.	The Structure of Laser Theory			201
2.	Rate Equations			203
3.	The Semiclassical Approach	••••••		219
4.	The Fully Quantum Mechanical Treatment			242
5.	The General Theory of Dissipation and	Fluctuations	of Quantum	
	Systems Far from Thermal Equilibrium .		•• ••	293
Aŗ	ppendix			313

OPTICAL RESONATORS

G. TORALDO DI FRANCIA

1.	Introduction	••	••	••		••		••	323
2.	The Fabry–Pérot Cavity	••	••	••	••	••	••	••	324
3.	The Confocal Resonator	••	••	••	••	••	••	••	331
4.	Beam Waveguides and No.	n-Co	nfocal F	lesona	tors	••		••	334
5.	Periodic Systems and Stabi	ility			••	••	••	••	341
6.	Roof-Mirror Resonators	••	••	••	••	••	••	••	345

REVIEW OF NONLINEAR OPTICAL PHENOMENA IN CONDENSED MATTER

N. BLOEMBERGEN

1.	Introduction	•	••	••	••	355
2.	Light Pulse Propagation Through a Two Level Sys	stem	••		••	356
3.	Lowest Order Nonlinear Susceptibility		••			359
4.	Nonlinear Coupling between Electromagnetic Way	ves	••	••	••	363
5.	Polarization Cubic in the Electric Field Amplitude	s	••	••	••	365
6.	Stimulated Raman Effect		••			370
7.	Inelastic Rayleigh Scattering from Anisotropic Mc	olecule	es	••	••	374
8.	Stimulated Brillouin Effect		••	••	••	377
9.	Thermally Induced Brillouin and Rayleigh Scatteri	ing	••	••	••	379
10.	Stimulated Raman Scattering from Polaritons	•	••	••	••	382
11.	Coupling of Light Waves with other Excitations	•	••	••	••	385
12.	Transient Response	•	• •	••	••	387

xii

CONTENTS

OPTICAL PUMPING AND RELATED TOPICS

G. W. SERIES

I A PRELIMINARY SURVEY								
1. Introduction			• •	••		••		395
 Introduction The Brossel–Bitter Experi 	ment			••	••		••	396
3. Double Resonance Metho	od: Hyp	erfine	Structu	ires	••			401
4. Level-Crossings							• •	407
					• •			413
6. Ground States: Optical P	umping			•••				414
7. Relaxation Processes	p8	••		••		••	••	427
8. Frequency Shifts	••	••		••	•••	••	••	430
 Devel-Crossing in Ground 	··· States	••	••		••	••	••	433
10. Description of Optical	Dumnin	a in '	Termo	of Irr				455
Tensor Operators					cuucioi	-		434
-					••	••	••	434
II EXPERIMENTAL DETAILS AN	D POINT	S OF T	ECHNIQ	UE		••	• •	435
1. Experimental Details	••	••	••	••	••	••	• •	435
2. Spectrum of the Lamp	••	••	••	••	••		••	440
3. Excitation by Electrons and	nd other	Parti	cles			• •	• •	440
4. Coherence Narrowing, Pr	essure E	Broade	ening ar	nd Dep	olariza	tion		441
5. Comparison of Double							ents:	
Modulation Techniques						-F		442
6. Some Typical Results and	d some '	Recen	t Annli	cation	s of On	tical Pr		11.22
ing, Double Resonance an								443
7. Application of Optical M							••	445
							••	44 5
III RADIO-FREQUENCY INTERA				CE AND	OPTICA	L		
MONITORING				••		••	••	446
1. Distinction Between Opti-	cal Field	ls and	Radio-	Frequ	ency Fi	elds	••	446
2. Monochromatic Fields: S					Field Tr	eatmen	.t?	447
3. Monochromatic Fields: S					••		••	448
4. Application to Double Re	esonanc	e Expe	eriment	s	••	••		453
5. Modulation in Double Re	esonanc	e and	Optical	Pump	ing Exp	erimen	ts	457
					•••		••	459
7. Appendix				••				464
		(h) ==						
IV RADIO-FREQUENCY INTERA	CTIONS	(D) PE	RTURBA	TIONS				467
1. Systems of Three Unequ							ating	4.60
Magnetic Field	· · ·			••			::	468
2. Two Level Systems with						Static .		470
3. Two Level System with O	scillatin	g Fiel	d: Han	le Effe	ct	••	••	473
V REFRACTIVE INDEX AS A MO	ONITOR	OF OPT	TICAL P	UMPIN	э			477
1. Interaction of Light with				••				477
2. Coherence Between Radia								477
					••	••	••	
COLLED ENGE DI GEORET				-				
COHERENCE IN SPONTA	NEOUS	s em	ISSION	2	••	••	••	483
H. Haken, R. Hübner and	K. ZEI	LE						
QUANTUM STATISTICS OF	FOPTIC	CALF	ARAN	1ETRI	COSC	ILLAT	ION	489
R. Graham								

xiv	CONTE	NTS					
RADIATION FROM A SYSTEM D. F. Walls	I OF N	TWO	LEVE	EL ATO	OMS	••	501
NON-ADIABATIC EFFECTS IN F. Haake	THE L	ASER	•••	••	••	••	507
DETERMINATION OF THE ST LIGHT FROM PHOTOELECTR J. PEŘINA					OF		
 Introduction	••	 v Dist	 ributio	 n from :	 the Pho	 	513 515
	 ensity Dis n Quantu	 stribut ım Op	 tion tics	 	 	··· ·· ··	518 523 524 526
PARTICLE BEAM FLUCTUATI C. M. Bénard	ONS IN	QUA	ANTU	M ME	CHAN	ICS	
 The Wave Packet Formalism Ideal Detectors General Formulation of Coinci Coincidence Probability in the S Discussion Conclusions 	dence Pro			 Case 	 	 	535 536 536 538 539 542
AUTHOR INDEX	••	••	••	••	••	••	545
SUBJECT INDEX	••	••	••	••	••	••	553