Contents

1.	Gener	al Prir	nciples	1
	1.1	Interfe	erence of Light	1
		1.1.1	Fundamental Relationships	3
		1.1.2	Addition of Wave Fields	7
		1.1.3	Interference of Two Plane Monochromatic Waves of Identical Frequency	8
		1.1.4	Orientation and Frequency of the Interference Structure	LO
		1.1.5	Contrast of Interference Pattern	.1
		1.1.6	Interference of Plane Monochromatic Waves of Different Frequency	L2
		1.1.7	Interference of Spherical Waves 1	L4
		1.1.8	Nonmonochromatic Point Sources	19
		1.1.9	Coherence	21
		1.1.10	Extended Sources	25
		1.1.11	General Requirements on the Elements of an Interference Setup	26
	1.2	Optica	1 Interferometry	28
		1.2.1	Interferometers and Their Classification	29
		1.2.2	Twin-Wave Interferometers with Wavefront Division 3	30
		1.2.3	Twin-Wave Interferometers with Amplitude Division 3	32
		1.2.4	Equivalent Scheme of a Twin-Wave Interferometer with Amplitude Division	33
		1.2.5	Distribution of Intensities in a Twin-Wave Interference Pattern	35
		1.2.6	Application of Twin-Wave Interferometers	37
		1.2.7	Study of the Shape of Wavefronts	38
		1.2.8	Metrological Application	42
		1.2.9	Spectroscopic Applications	43
		1.2.10	Multiple-Wave Interferometers	46

VIII Contents

		1.2.11	Distribution of Intensities in a Multiple-Wave Interference Pattern
		1.2.12	Application of Multiple-Wave Interferometers 53
	1.3	Hologra	aphy
		1.3.1	Brief History of Development of Holography 55
		1.3.2	Fundamental Equations
		1.3.3	Classification of Holograms 59
		1.3.4	Basic Properties of Holograms 65
		1.3.5	Application of Holography
	1.4	Hologra	aphic Interferometry
		1.4.1	General Principles
		1.4.2	Features of Holographic Interferometry 74
		1.4.3	Real-Time Method
		1.4.4	Double-Exposure Method 80
2	Evno	cimonta	l Techniques
۷.			Sources
	~ · 1	2.1.1	Requirements for Light Sources in Holographic Inter-
			ferometry
		2.1.2	Gas Lasers
		2.1.3	Solid-State Lasers
		2.1.4	Dye Lasers
	2.2	Hologr	am Recording Materials
		2.2.1	Requirements to Recording Materials 97
		2.2.2	Silver Halide Photographic Materials 100
		2.2.3	Photoconductor-Thermoplastic Devices 113
		2.2.4	New Recording Materials
	2.3	Setups	
		2.3.1	Basic Kinds of Holographic Setups 115
	2.4	Experi	mental Aspects
		2.4.1	Premises
		2.4.2	Holographic Slab
		2.4.3	Protection Against Vibration
		2.4.4	Setup Elements. Pinhole Diaphragm and Collimator 120
		2.4.5	Beam Splitter

Contents

		2.4.6	Light-Scattering Screen	131
		2.4.7	Hologram Fasteners	134
3.	Inve	stigati	on of Transparent Phase Inhomogeneities	141
	3.1	Featur	es of Holographic Interferometry of Transparent Objects	141
		3.1.1	Methods of Visualization of Phase Inhomogeneities and	
			the Relationship Between the Spatial Distribution of the Refractive Index and the Quantity Being Measured	142
		3.1.2	Setups Without Diffusing Screens	147
		3.1.3	Setups with a Diffusing Screen	148
		3.1.4	Production of Interferograms with Fringes of Finite Width. The Wedge Method	155
		3.1.5	Localization of Interference Pattern	157
		3.1.6	Calculation of the Spatial Distribution of the Refractive Index from an Interferogram	164
		3.1.7	The Two-Dimensional Case	165
		3.1.8	The Axisymmetric Case	168
		3.1.9	The Three-Dimensional Case	171
	3.2	Sensit Changi	rivity of Holographic Interferometry and Methods of	176
		3.2.1	Sensitivity of Twin-Wave Interferometry	177
		3.2.2	Multipass Setups	178
		3.2.3	Interference Patterns Formed by Conjugate Waves	179
		3.2.4	Three-Wave Interferometry	181
		3.2.5	Two-Wavelength Methods of Changing the Sensitivity .	182
		3.2.6	The Use of Nonlinear Effects	186
		3.2.7	Dispersion Holographic Interferometry	192
		3.2.8	Method of Resonance Interferometry	195
	3.3	Hologr	raphic Diagnostics of Plasma	198
		3.3.1	Features and Possibilities of Holographic Plasma Diagnostics Methods	199
		3.3.2	Refraction of Plasma	201
		3.3.3	Holographic Investigation of a Laser-Induced Spark. Cineholography	202
		3.3.4	Two-Wavelength Holographic Interferometry of a Laser-Induced Spark	205
		3.3.5	Study of a Laser-Induced Flare on a Solid Target	207
		3.3.6	Holographic Interferometry of Flash Lamps	21:

 χ Contents

		3.3.7	Jets	2				
		3.3.8	Investigation of a Spark Breakdown 21	3				
		3.3.9	Holographic Investigations of θ and z Pinches 21	5				
		3.3.10	Investigation of Plasma in the Vicinity of a Neutral-Current Layer	9				
	3.4	Use of tions	Holographic Interferometry in Gas-Dynamic Investiga-	2				
		3.4.1	Investigation of Flow Around Freely Flying Bodies 22	2				
		3.4.2	Investigations in Wind Tunnels	:5				
4.	Investigation of Displacements and Relief							
	4.1	The Pro	ocess of Interference-Pattern Formation in Holography 22	:8				
	4.2		s of Interpreting Holographic Interferograms when Dis- ents are Studied	14				
		4.2.1	Procedure for Multiple-Hologram Investigation 25	i 1				
		4.2.2	Procedure for Single-Hologram Investigation 25	52				
	4.3	Invest	igation of Surface Relief	56				
		4.3.1	Two-Wavelength Method	57				
		4.3.2	Immersion Method	73				
		4.3.3	Double-Source Method	75				
	4.4	Flaw D	detection by Holographic Interferometry27	77				
5.	Ноїо	graphic	Studies of Vibrations	37				
	5.1	Influe Recons	nce of Object Displacement on the Brightness of the tructed Image. The Powell—Stetson Method 28	39				
		5.1.1	Motion of an Object with a Constant Velocity 29	}0				
		5.1.2	Stepwise Motion of an Object)1				
		5.1.3	Harmonic Vibrations of an Object 29) 2				
	5.2	The St	roboholographic Method	37				
	5.3	Phase	Modulation of the Reference Beam 30)7				
		5.3.1	Determining Large Amplitudes of Vibrations 30)9				
		5.3.2	Determining Small Amplitudes of Vibrating 3	10				
	5.4	Determ	nining the Phases of Vibrations of an Object 3	11				
Re	feren	ces .		13				
c.,	hioct	Inday	34	20				