Contents

Preface to the preface	v
Preface	vii
Contents	xi
List of symbols	xv

1.	Introduction	1
1.1.	The maser and laser principle	1
1.2.	The problems of laser theory	5
1.3.	The structure of laser theory and its representation in this book	10
2.	Basic properties and types of lasers	14
2.1.	The laser condition	14
2.2.	Typical properties of laser light	19
2.3.	Examples of laser systems (types of lasers and laser	
	processes)	22
3.	Laser resonators	44
3.1.	Survey	44
3.2.	Modes in a confocal resonator	49
3.3.	Modes in a Fabry-Perot resonator	55
4.	The intensity of laser light. Rate equations	59
4.1.	Introduction	59
4.2.	The photon model of a single mode laser	59
4.3.	Relaxation oscillations	67
4.4.	Q-switching	70

xii Contents

 4.6. Hole burning. Qualitative discussion 4.7. Quantitative treatment of hole burning. Single mode laser action of an inhomogeneously broadened line 4.8. Spatial hole burning. Qualitative discussion 4.9. The multimode laser. Mode competition and Darwin's survival of the fittest 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximations 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the mode amplitudes alone 6.5. The basic equations of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 	72
 4.7. Quantitative treatment of hole burning. Single mode laser action of an inhomogeneously broadened line 4.8. Spatial hole burning. Qualitative discussion 4.9. The multimode laser. Mode competition and Darwin's survival of the fittest 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	78
 action of an inhomogeneously broadened line 4.8. Spatial hole burning. Qualitative discussion 4.9. The multimode laser. Mode competition and Darwin's survival of the fittest 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximations 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 4.8. Spatial hole burning. Qualitative discussion 4.9. The multimode laser. Mode competition and Darwin's survival of the fittest 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.6. Two important approximations: The rotating wave approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	85
 4.9. The multimode laser. Mode competition and Darwin's survival of the fittest 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	87
 survival of the fittest 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 4.10. The coexistence of modes due to spatial hole burning. Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	88
 Quantitative treatment 5. The basic equations of the semiclassical laser theory 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser: Transients 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 The basic equations of the semiclassical laser theory Introduction Derivation of the wave equation for the electric field strength The matter equations The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density The laser equations in a resonator Two important approximations: The rotating wave approximation The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations Dimensionless quantities for the light field and introduction of a coupling constant The basic laser equations Applications of semiclassical theory The single mode laser. Investigation of stability Single mode laser: Transients Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone Simple examples of the multimode case Frequency locking of three modes 	92
 5.1. Introduction 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	98
 5.2. Derivation of the wave equation for the electric field strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	98
 strength 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 5.3. The matter equations 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	99
 5.4. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	101
 quantities electric field strength, polarization, and inversion density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 density 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 5.5. The laser equations in a resonator 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	108
 5.6. Two important approximations: The rotating wave approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	110
 approximation and the slowly varying amplitude approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser auro 	
 approximation 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 5.7. The semiclassical laser equations for the macroscopic quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	113
 quantities electric field strength, polarization, and inversion density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	
 density in the rotating wave- and slowly varying amplitude approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	
 approximations 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser auro 	
 5.8. Dimensionless quantities for the light field and introduction of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 	116
 of a coupling constant 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser auro 	
 5.9. The basic laser equations 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	118
 6. Applications of semiclassical theory 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser auro 	119
 6.1. The single mode laser. Investigation of stability 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser auro 	123
 6.2. Single mode laser action. Amplitude and frequency of laser light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	123
 light in the stationary state 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	
 6.3. The single mode laser: Transients 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	126
 6.4. Multimode action of solid state lasers. Derivation of reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	131
 reduced equations for the mode amplitudes alone 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	
 6.5. Simple examples of the multimode case 6.6. Frequency locking of three modes 6.7 The laser guro 	136
6.6. Frequency locking of three modes	139
67 The loser auro	142
0.7. The fasel gyro	146

	Contents	xiii
6.8. 6.9.	The gas laser. Single mode operation Derivation of the rate equations from the semiclassical	147
	laser equations	151
7.	Ultrashort pulses	154
7.1. 7.2. 7.3.	Some basic mechanisms. Active and passive mode locking The basic equations of self-pulsing lasers A general method for calculating evolving patterns close to	154 162
1.01	instability points	164
7.4.	Onset of ultrashort laser pulses: linear stability analysis	171
7.5.	Onset of ultrashort laser pulses: nonlinear analysis	173
7.6. 77	Solution of the order parameter equation Models of lasers with saturable absorbers	1/8
1.1.	widels of lasers with saturable absorbers	105
8.	Instability hierarchies of laser light. Chaos, and routes to	
	chaos	187
8.1.	Survey	187
8.2.	The basic equations	189
8.3.	The single mode laser equations and their equivalence with	100
Q /	Criteria for the presence of chaos	10/
0.4. 8 5	Routes to chaos	194
8.6.	How to produce laser light chaos. Some theoretical models	198
8.7.	Single mode laser with injected signal. Chaos, breathing,	
	spiking	208
9.	Optical bistability	215
9.1.	Survey	215
9.2.	A specific model	217
9.3.	Steady state behavior of the model of section 9.2	219
9.4.	The general case of an arbitrary susceptibility	223
9.5.	Concluding remarks on chapter 9	233
10.	Quantum theory of the laser I	234
	A first approach via quantum mechanical Langevin equations. Coherence, noise and photon statistics	
10.1.	Why quantum theory of the laser?	234
10.2.	The laser Hamiltonian	235
10.3.	Quantum mechanical Langevin equations	240

10.4.	Coherence and noise	248
10.5.	The behavior of the laser at its threshold. Photon statistics	264
11.	Quantum theory of the laser II A second approach via the density matrix equation and quantum classical correspondence	276
11.1. 11.2.	The density matrix equation of the laser A short course in quantum classical correspondence. The	276
	example of a damped field mode (harmonic oscillator)	280
11.3.	Generalized Fokker-Planck equation of the laser	291
11.4.	Reduction of the generalized Fokker–Planck equation	295
11.5.	Concluding remarks	301
12.	A theoretical approach to the two-photon laser	302
12.1.	Introduction	302
12.2.	Effective Hamiltonian, quantum mechanical Langevin	
	equations and semiclassical equations	303
12.3.	Elimination of atomic variables	305
12.4.	Single mode operation, homogeneously broadened line	
	and running wave	306
13.	The laser – trailblazer of synergetics	309
13.1.	What is synergetics about?	309
13.2.	Self-organization and the slaving principle	310
13.3.	Nonequilibrium phase transitions	314
Refer	ences and further reading	318
Subie	Subject Index	
· · · J -		