I. Introduction	1
I.1. The maser principle	1
I.2. The laser condition	2
I.3. Properties of laser light	5
a) Spatial coherence	5
b) Temporal coherence	6
c) Photon statistics	7
e) Ultrashort pulses	7
I.4. Plan of the article \ldots	7
II. Optical resonators	9
II.1. Introduction	9
II.2. The Fabry-Perot resonator with plane parallel reflectors	11
a) Spatial distribution of modes	11
b) Diffraction losses	17
c) Three-dimensional resonator	18
11.3. Confocal resonator	19
a) Field outside the resonator	20
c) Far field pattern of the confocal resonator	21
d) Phase shifts and losses	21
II.4. More general configurations	22
a) Confocal resonators with unequal square and rectangular	
apertures	22
b) Resonators with reflectors of unequal curvature	23
α) Large circular apertures	23
$p_{j} \text{ Large square aperture } \dots $	43
II.5. Stability	23
111. Quantum mechanical equations of the light field	24
	24
111.2. Second quantization of the electron wave field	27
III.3. Interaction between radiation field and electron wave field	28
III.4. The interaction representation and the rotating wave approximation	2 9
III.5. The equations of motion in the Heisenberg picture	30
III.6. The formal equivalence of the system of atoms each having 2 levels	
with a system of $\frac{1}{2}$ spins \ldots \ldots \ldots \ldots \ldots \ldots	31
IV. Dissipation and fluctuation of quantum systems. The realistic laser equations $\$.	33
IV.1. Some remarks on homogeneous and inhomogeneous broadening	33
a) Natural linewidth	33
b) Inhomogeneous broadening	33
α) Impurity atoms in solids $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \alpha$	33
γ) Semiconductors	34 34
c) Homogeneous broadening	34
α) Impurity atoms in solids \ldots \ldots \ldots \ldots \ldots \ldots	34
eta) Gases	34
γ) Semiconductors \ldots \ldots \ldots \ldots \ldots	34

IV.2.	A survey of IV.2. $-$ IV.11	35 35 36 36 36 36 37 38 38 38 38 39
IV.3.	Quantum mechanical Langevin equations: origin of quantummechanical Langevin forces (the effect of heatbaths).a) The field (one mode)b) Electrons ("atoms")	39 40 42
IV.4.	The requirement of quantum mechanical consistencya) The field	44 44 45
IV.5.	The explicit form of the correlation functions of Langevin forcesa) The fieldb) The N-level atom	46 46 46
IV.6.	 The complete laser equations	49 50 50 50 51 51
IV.7.	The density matrix equation a) General derivation b) Specialization of Eq. (IV.7.31) α) Light mode β) Atom γ) The density matrix equation of the complete system of M laser modes and N atoms	51 51 56 56 57 58
IV.8.	The evaluation of multi-time correlation functions by the single-time density matrix	59
IV.9.	 Generalized Fokker-Planck equation: definition of distribution functions a) Field a) Wigner distribution function and related representations β) Transforms of the distribution functions: characteristic functions γ) Calculation of expectation values by means of the distribution functions b) Electrons c) Distribution functions for a single electron β) Characteristic functions 	60 61 63 64 64 64 65
IV.10	 γ) Electrons and fields	65 65 65 65 67 70
IV.11.	The calculation of multi-time correlation functions by means of the distribution function	71
V. Properti	es of quantized electromagnetic fields	73
	magnetic field	73

	 a) Classical description: definitions	73 73 74
	 γ) The mutual coherence function	74 76
	α) Elementary introductions	76
	β) Coherence functions	77
	 δ) Generation of coherent fields by classical sources (the forced harmonic oscillator). 	, 0 80
V.2.	Uncertainty relations and limits of measurability	83
	a) Field and photon number	83
	b) Phase and photon number	85
	β) Exact treatment	85
	c) Field strength	87
V.3.	Spontaneous and stimulated emission and absorption	88
	a) Spontaneous emission	88
	c) Comparison between spontaneous and stimulated emission rates .	90 91
	d) Absorption	92
V.4.	Photon counting	93
	a) Quantum mechanical treatment, correlation functions b) Classical treatment of photon counting	93
V.5	Coherence properties of spontaneous and stimulated emission. The	27
	spontaneous linewidth	97
VI. Fully qu	antum mechanical solutions of the laser equations	99
VI.1.	Disposition	99
VI.2.	Summary of theoretical results and comparison with the experiments a) Qualitative discussion of the characteristic features of the laser	101
	output: homogeneously broadened line	102
	α) The spectroscopic linewidth well above threshold	102
	β) The spectroscopic linewidth somewhat below threshold	103
	γ) The intensity (or amplitude) fluctuations	104
VI.3	The quantum mechanical Langevin equations for the solid state laser	112
• 2.5.	a) Field equations	113
	b) Matter equations	115
	 α) The motion of the atomic dipole moment	115
	2. Dipole moment between levels j and $l \neq k, j$ and between	,
	levels k and $l = j, k \dots $	115
	3. Dipole moment between levels $i \neq k, j$ and $l \neq k, j$	115
	1. For the laser levels j and k	115
	2. For the non-laser levels	116
VI.4.	Qualitative discussion of single mode operation	116
	a) The linear range (subthreshold region)	118
	α) Phase diffusion	120
	β Amplitude (intensity) fluctuations	120
	c) The nonlinear range at high inversion	120
VI.5.	Quantitative treatment of a homogeneously broadened transition:	120
5	emission below threshold (intensity, linewidth, amplification of	
	signals)	120
	α) Single-mode linewidth below threshold	120
	β) Many modes below threshold	123
	b) External signals	124

VI.6.	Exact elimination of atomic variables in the case of a homogeneously	
	broadened line. Running or standing waves	125
	$\alpha) \text{ Standing waves } \dots $	125
	ρ Kunning waves	120
V1.7.	Single mode operation above threshold, homogeneously broadened	100
	nne	128
	b) First order	130
	c) Phase noise. Linewidth formula	130
	d) Amplitude fluctuations	132
	α) The special case of a moderate photon number	133
	β) The special case of a big photon number	134
VI.8.	Stability of amplitude. Spiking and damped oscillations. Single-mode	
	operation, homogeneously broadened line	134
	a) Qualitative discussion	135
	b) Quantitative treatment $\dots \dots \dots$	136
	c) The special case $w_{13} \rightarrow \infty$ (two level system)	137
V1.9.	Qualitative discussion of two-mode operation	138
	b) Both modes well below threshold	130
	c) Modes somewhat above or somewhat below threshold	140
	d) Both modes above threshold	141
	(α) $ ω_1-ω_2 \gg 1/T$	142
	$\beta) \omega_1 - \omega_2 \lesssim 1/T \dots \dots$	143
VI.10.	Gas laser and solid-state laser with an inhomogeneously broadened	
	line. The van der Pol equation, single-mode operation	144
	a) Solid-state laser with an inhomogeneously broadened line and an	
	arbitrary number of levels	144
	b) Gas laser \ldots \ldots \ldots \ldots \ldots \ldots \ldots	146
VI.11.	Direct solution of the density matrix equation	146
VI.12.	Reduction of the generalized Fokker-Planck equation for single-mode	
	action	153
	a) Expansion in powers of $N^{-\frac{1}{2}}$ (N: number of atoms)	154
	b) Adiabatic elimination of the atomic variables	156
	c) The Pokker-Planck equation	158
V1.13.	Solution of the reduced Fokker-Planck equation	159
	a) Steady state solution	159
377	The Delahar Direction for multimedia action many three and	100
V1.14.	The Forker-Planck equation for multimode action hear threshold.	160
	a) The explicit form of the Fokker-Planck equation	168
	b) Theorem on the exact stationary solution of a Fokker-Planck	100
	equation	169
	c) Nearly exact solution of $(VI.14.1)$	170
	α) Normal multimode action	170
	β) Phase locking of many modes	170
	γ) A qualitative discussion of phase locking (example of three modes)	171
377.45	The linear and queri linear solution of the general Fahler Direct	171
v1.15.	equation	177
	a) Far below threshold	172
	b) Well above threshold	172
vii. ine sem	Characteristic approach and its approachons	173
V11.1.	Spirit of the semiclassical approach. The equations for the solid state	177
	a) The field equations	174
	b) The material equations	175
	c) Macroscopic treatment	178
	α) Wave picture, inhomogeneous atomic line	178
	β) Wave picture, homogeneous atomic line \ldots \ldots \ldots	178

	γ) Wave picture, homogeneous atomic line, rotating wave	
	approximation, slowly varying amplitude approximation	179
	d) Mode picture, polarization waves	179
	d) Extension to multilevel atoms.	180
	e) Systematics of the semiclassical approach	181
VII.2.	Method of solution for the stationary state	182
	a) Single-mode operation, general features	183
	b) Two-mode operation, general features	184
	α) Time-independent atomic response	185
	β) Time-dependent atomic response $\ldots \ldots \ldots \ldots \ldots \ldots$	185
VII.3.	The solid-state laser with a homogeneously broadened line. Single and	
	multimode laser action	185
	a) Single-mode operation	185
	b) Multiple-mode operation	186
	α) Equations for the photon densities of M modes	187
	β) Equations for the frequency shift $\ldots \ldots \ldots \ldots \ldots \ldots$	187
VII.4.	The solid-state laser with an inhomogeneously broadened Gaussian	
	line. Single- and two-mode operation	187
	a) One mode \ldots	187
	α) Equation for the frequency shift $\ldots \ldots \ldots \ldots \ldots \ldots$	188
	β) Equation for the photon density $\ldots \ldots \ldots \ldots \ldots$	189
	b) Two modes \ldots \ldots \ldots \ldots \ldots	189
	$\alpha) \text{ Equations for the photon densities } n_{\lambda} \dots \dots$	189
	ρ) Equations for the frequency shifts $\dots \dots \dots \dots$	189
		190
VII.5.	The solid-state laser with an inhomogeneously broadened line:	
	multimode action	191
	a) Normal multimode action \ldots \ldots \ldots \ldots \ldots	191
	b) Combination tones \dots \dots \dots \dots \dots \dots \dots \dots	192
		193
V11.6.	Equations of motion for the gas laser	194
VII.7.	Single- and two-mode operation in gas lasers	197
	a) Single-mode operation	197
	α) Equation for the photon density $\ldots \ldots \ldots \ldots \ldots$	198
	β) Equation for the frequency shift $\ldots \ldots \ldots \ldots \ldots \ldots$	199
	b) I wo-mode operation \ldots \ldots \ldots \ldots \ldots \ldots \ldots	199
	α) Equations for the photon densities $\ldots \ldots \ldots$	200
1777.0	p_j Equations for the frequency since $\dots \dots \dots \dots \dots \dots \dots$	201
V11.8.	Some exactly solvable problems	201
	a) Single-mode operation in solid state lasers	201
	A) Homogeneously bloadened line	202
	2 Standing waves in avial direction	202
	β) Inhomogeneously broadened line, running waves	203
	b) Single-mode in the gas laser.	203
VII.o.	External fields	203
	a) The effect of a longitudinal magnetic field on the single spatial	205
	mode output	205
	b) The field equations	206
	c) The matter equations	208
	d) Solution of the amplitude and frequency-determining Eqs. (VII.9.24),	
	(VII.9.25)	210
VII.10.	Ultrashort optical pulses: the principle of mode locking	213
	a) Loss modulation by an externally driven modulator	215
	b) Loss modulation by a saturable absorber	216
	c) Gain modulation \ldots \ldots \ldots \ldots \ldots \ldots	216
	d) Frequency modulation	217
	e) Analogy to microwave circuits	217
VII.11.	Ultrashort optical pulses: detailed treatment of loss modulation	217
	a) Pulse shape and pulse width	222
	b) Discussion of the results and of the range of validity	223
	c) Numerical application	224

\mathbf{XIII}

VII.12. Super-radiance. Spin and photo echo	system : 	224 228 228 229 231 231 232 234 236 237 237 238 238 238 238 238 239 241 243 244 245
e) The 2 <i>π</i> -pulse. (Self-induced transparency)		246
VII.14. Derivation of rate equations	· · · · ·	247 249
 (especially: threshold conditions and solution for the stead (especially: threshold condition, pump power requirement versus multimode laser action). a) The rate equations . b) The field equations . c) The field equations . b) Treatment of the steady state . c) The completely homogeneous case . c) The completely homogeneous case . c) The completely system, the lower transition is laser-active . b) 3-Level system, the upper transition is laser-active . c) 4-Level system, laser action between the two middle le VIII.2. The coexistence of modes on account of spatial inhomogeneiti 	y state , single 	249 249 250 251 251 252 253 253 255
 inhomogeneously broadened line		255 255 257 257 258 258 258 258 259
 VIII.3. Laser cascades		259 260 261 261 262
 VIII.4. Solution of the time-dependent rate equations. Relaxation oscillations. a) The 3-level system with laser action between the two lower b) 3-Level system, laser action between the two upper levels c) 4-Level system d) Approximate solution for small oscillations 	 er levels 	264 264 265 266 266
VIII.5. The giant pulse laser	· · · · ·	267 268 269

XIV

IX. Further methods for dealing with quantum systems far from thermal equilibrium	1
IX.1. The general form of the density matrix equation	2
IX.2. Exact generalized Fokker-Planck equation: definition of the	
distribution function	1
IX.3. The exact generalized Fokker-Planck equation	5
IX.4. Derivation of the exact generalized Fokker-Planck equation 276	5
IX.5. Projection onto macroscopic variables	4
IX.6. Exact elimination of the atomic operators within quantum mechanical	
Langevin equations $\ldots \ldots 286$	5
IX.7. Rate equations in quantized form	7
IX.8. Exact elimination of the atomic operators from the density matrix	_
$equation \dots \dots$	3
1X.9. Solution of the generalized field master Eq. $(IX.8.12)$)
X. Appendix. Useful operator techniques	1
X.1. The harmonic oscillator $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 294$	4
X.2. Operator relations for Bose operators	7
X.3. Formal solution of the Schrödinger equation	3
X.4. Disentangling theorem $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 299$	9
X.5. Disentangling theorem for Bose operators \ldots \ldots \ldots \ldots 304	l
Sachverzeichnis (Deutsch-Englisch)	5
	,
Subject Index (English-German)	3

xv