Contents

1	Maxwell's equations and propagation of electromagnetic	
	waves	1
1.1	Introduction	1
1.2	Maxwell's equations	1
1.3	Plane waves in a dielectric	3
1.4	The Poynting vector	12
1.5	The complex notation	18
1.6	Wave propagation in an absorbing medium	19
	Additional problems	25
2	Reflection and refraction of electromagnetic waves	27
2.1	Introduction	27
2.2	Reflection and refraction at the interface of two homog-	
	eneous nonabsorbing dielectrics	28
2.3	Total internal reflection and evanescent waves	42
2.4	Reflection and transmission by a film	46
2.5	Extension to two films	54
2.6	Interference filters	57
2.7	Periodic media	57
2.8	Reflection and transmission in the presence of absorbing	
	media	60
	Additional problems	62
3	Wave propagation in anisotropic media	63
3.1	Introduction	63
3.2	Double refraction	63
3.3	Some polarization devices	69
3.4	Plane waves in anisotropic media	74
3.5	Wave refractive index	78

	~
VI	Contents

3.6	Ray refractive index	82
3.7	The ray velocity surface	84
3.8	The index ellipsoid	87
	Problems	89
4	Fraunhofer diffraction	97
4.1	Introduction	97
4.2	The diffraction formula	99
4.3	Rectangular aperture	102
4.4	The single slit diffraction pattern	106
4.5	Circular aperture	108
4.6	Directionality of laser beams	114
4.7	Limit of resolution	117
4.8	Resolving power of a microscope	121
4.9	Annular aperture and apodization	122
4.10	Fraunhofer diffraction by a set of identical apertures	124
4.11	Resolving power of a prism	135
	Additional problems	137
5	Fresnel diffraction	140
5.1	Introduction	140
5.2	The diffraction integral	140
5.3	Uniform amplitude and phase distribution	141
5.4	Diffraction of a Gaussian beam	141
5.5	Intensity distribution near the paraxial image point of a converging lens	144
5.6	Fresnel diffraction by a circular aperture	148
5.7	Babinet's principle	152
5.8	Fresnel diffraction due to a circular disc	152
5.9	Diffraction at a straight edge	154
5.10	Fresnel diffraction by a long narrow slit	160
	Problems	165
6	Spatial frequency filtering	167
6.1	Introduction	167
6.2	The Fourier transform and some of its important properties	168
6.3	The Fourier transforming property of a thin lens	169
6.4	Some elementary examples of the Fourier transforming	
	property of a lens	172
6.5	Applications of spatial frequency filtering	175

Contents	vii

6.6	Phase contrast microscope	177
6.7	Image deblurring	178
_	** 1	101
7	Holography	181
7.1	Introduction	181
7.2	The basic principle	182
7.3	Coherence requirements	188
7.4	Resolution	188
7.5	Fourier transform holograms	190
7.6	Volume holograms	194
7.7	Some applications	194
8	Lasers: I	201
8.1	Introduction	201
8.2	The Einstein coefficients	202
8.3	Light amplification	208
8.4	The threshold condition	211
8.5	Laser rate equations	214
8.6	Variation of laser power around threshold	226
8.7	Optimum output coupling	234
8.8	Line broadening mechanisms	236
	Additional problems	243
9	Lasers: II	245
9.1	Introduction	245
9.2	Modes of a rectangular cavity and the open planar resonator	246
9.3	The quality factor	252
9.4	The ultimate linewidth of the laser	254
9.5	Mode selection	256
	Q-switching	264
9.7	Mode locking in lasers	272
9.8	Modes of a confocal resonator system	280
9.9	General spherical resonator	287
9.10	Higher order modes	291
40		204
10	Some laser systems	294
10.1	Introduction	294
10.2	Ruby lasers	294
10.3	Neodymium based lasers	297
10.4	The He–Ne laser	300

viii	Contents	
10.5	The array is a large	202
10.5 10.6	E	302 302
10.0	Z .	304
10.7	5	304
10.8		308
10.9		314
	Floolenis	314
11	Electromagnetic analysis of the simplest optical waveguide	315
11.1	Introduction	315
11.2	Classification of modes for a planar waveguide	318
11.3		319
11.4	TM modes in a symmetric step index planar waveguide	328
11.5	The relative magnitude of the longitudinal components of	
	the E and H fields	330
11.6	Power associated with a mode	331
11.7	Radiation modes	333
11.8	Excitation of guided modes	334
11.9	Maxwell's equations in inhomogeneous media: TE and TM	
	modes in planar waveguides	339
	Additional problems	342
12	Leaky modes in optical waveguides	347
12.1	Introduction	347
12.2	Quasi-modes in a planar structure	349
12.3	Leakage of power from the core	352
12.4	The matrix method for determining the propagation charac-	
	teristics of planar structures which may be leaky or absorbing	354
12.5	Calculation of bending loss in optical waveguides	358
13	Optical fibre waveguides	364
13.1	Introduction	364
13.2	The optical fibre	367
13.3	The numerical aperture	368
13.4	Pulse dispersion in step index fibres	369
13.5	Scalar wave equation and the modes of a fibre	374
13.6	Modal analysis for a step index fibre	377
13.7	Modal analysis of a parabolic index medium	387
13.8	Pulse dispersion	390
13.9	Multimode fibres with optimum profiles	395

Contents	ix	

13.10	First and second generation fibre optic communication	
	systems	400
13.11	Single mode fibres	403
13.12	The Gaussian approximation	410
13.13	Splice loss	411
13.14	The vector modes	416
14	Integrated optics	421
14.1	Introduction	421
14.2	Modes in an asymmetric planar waveguide	422
14.3	Ray analysis of planar waveguides	432
14.4	WKB analysis of inhomogeneous planar waveguides	433
14.5	Strip waveguides	437
14.6	Some guided wave devices	441
	Additional problems	455
15	The electrooptic effect	461
15.1	Introduction	461
15.2	The electrooptic effect in KDP crystals: longitudinal mode	462
15.3	The electrooptic effect in KDP crystals: transverse mode	473
15.4	The electrooptic effect in lithium niobate and lithium	
	tantalate crystals	475
15.5	General considerations on modulator design	477
15.6	The index ellipsoid in the presence of an external electric field	492
	Additional problems	498
16	The strain optic tensor	502
16.1	Introduction	502
16.2	The strain optic tensor	502
16.3	Calculation of $\overline{\Delta \epsilon}$ for a longitudinal acoustic wave propagat-	
	ing in an isotropic medium	504
16.4	Calculation of $\Delta \epsilon$ for a shear wave propagating along the z-	
	direction in lithium niobate	505
	Problems	506
17	Acoustooptic effect: Raman-Nath diffraction	508
17.1	Introduction	508
17.2	Raman-Nath and Bragg regimes of diffraction	508
17.3	A simple experimental set up to observe Raman-Nath	7 10
4	diffraction	510
17.4	Theory of Raman–Nath diffraction	511

x Contents

18	Acoustooptic effect: Bragg diffraction	519
18.1	Introduction	519
18.2	Small Bragg angle diffraction	520
18.3	Basic equations governing Bragg diffraction	524
18.4	Coupled wave analysis for small Bragg angle diffraction	526
18.5	Large Bragg angle diffraction	532
18.6	Application to periodic media	537
18.7	Transition to the Raman-Nath regime	540
18.8	Vector approach to coupled wave equations	541
18.9	Evaluation of $\hat{\mathbf{e}}^{\dagger} \Delta \epsilon \hat{\mathbf{e}}_0$	542
19	Acoustooptic devices	546
19.1	Introduction	546
19.2	Raman-Nath acoustooptic modulator	546
19.3	Bragg modulator	548
19.4	Acoustooptic deflectors	559
19.5	Acoustooptic spectrum analyser	562
20	Nonlinear optics	564
20.1	Introduction	564
20.2	The self focussing phenomenon	565
20.3	Second harmonic generation	569
	Appendices	587
A	Wave equation and its solutions	589
В	The index ellipsoid	592
C	Density of modes	.595
D	Solution of the scalar wave equation for an infinite square law medium	596
Ε	Leakage calculations of a packet of radiation modes	598
F	WKB analysis of multimode fibres	603
G	Coupled mode equations	609
	References and suggested reading	612
	Index	621