Contents

. Properties of Optical Cavity Modes			
	1.1	Background Information	5
	1.2	Conventional Cavities	6
	1.3	Mode Discrimination with Fabry-Perot Cavities	8
	1.4	The Fox and Li Modes	9
	1.5	Diffraction Integrals Pertinent to the Fox and Li Modes	10
	1.6	Form for Rectangular Apertures	12
	1.7	Confocal Cavities	21
	1.8	Generalized Confocal Resonators and Singular Regions of	
		High Loss	30
	1.9	Output Coupling	33
	1.10	Mode Selection	34
	1.11	Modes for Continuous Apertures	38
	1.12	Theory of Cavity Mode-Mixing Effects in Internally-Scanned	
		Lasers	45
	1.13	Scanning through Transverse Mode-Locking	45
	1.14	Swept Transverse Apertures	47
	1.15	The Scanning Problem for Continuous Apertures	57
2.	Hole	-Burning and Mode-Pulling Effects in Gas Lasers	62
	2.1	Background Considerations	64
	2.2	Simple Two-Level Resonance Experiment	65
	2.3	Inclusion of Phase Interruption	68
	2.4	Gain (or Absorption) Coefficient for Running Waves	74
	2.5	Doppler-Broadened Gain and Absorption Coefficients	79
	2.6	Exact Gain (or Absorption) Expression for Doppler-	
		Broadened Line	81

4 CONTENTS

2.7	Note on the Functions Tabulated by Faddeyeva and Terent'ev	83
2.8	Qualitative Discussion of the Multi-Mode Laser Oscillator	84
2.9	Methods of Studying Multi-Mode Oscillations	87
2.10	Line Narrowing and Spectral Purity	89
2.11	Mode-Pulling Effects	90
2.12	General Laser Frequency Equation	93
2.13	The Kramers-Kronig Relations	94
	Phase Shift for a Lorentzian Line	98
2.15	Homogeneously-Broadened Lasers	99
	Phase Shift for a Gaussian Distribution of Lorentzians	101
2.17	Hole-Burning Effects	105
2.18	Population "Hole" Depths and "Ear" or "Bump" Heights	107
2.19	Exact Expression for a Gain Hole Due to One Running Wave	112
2.20	Gain Hole Depth and Width in the Doppler-Broadened Limit	115
2.21	Accuracy of the Additive Approximation	120
2.22	Single Mode Equations and Hysteresis Effects	125
2.23	The Isotope Effect in Single Mode	129
2.24	Two Modes with the Same Polarization in One Isotope	133
2.25	N-Modes with the Same Polarization	140
2.26	Comparison with the Lamb Theory	143
	Approximate Semi-Empirical Form for Power Broadening	146
	Collision Broadening	149
2.29	Frequency Stabilization Methods Based on Hole-Burning	
	Effects	162
2.30	Single-Mode with a Saturable Absorber	166
	Frequency Stabilization and Mode Suppression with Saturable	
	Absorbers	171
2.32	Strong-Wave-Weak-Wave Tuning Dips	178
	The Self-Stabilization of Laser Frequencies with Saturable	
	Absorbers	181
2.34	Threshold Hysteresis Effects with Intra-cavity Saturable	
	Absorbers	184
2.35	Hole-Burning Effects in Three-Level Laser Spectroscopy	186
	endix	201
Inde		207