Contents

1.	Glas	3 Laser Physics	1
-	1.1	Spectroscopy of Nd ³⁺	
	1.2	Nd ³⁺ Environment in Glass	5
	1.3	Amplification of Pulses in Nd:Glass	10
	1.4	Judd-Ofelt Theory	16
	1.5	Multiphonon Relaxation in Nd:Glass	30
	1.6	The Nonlinear Index in Nd:Glass	40
2.	Opti	cal and Physical Properties of Laser Glasses	58
	2.1	Fundamental Optical Constants	
	2.2	Fundamental Physical Constants	71
	2.3	Figures of Merit for Laser Glasses	75
		2.3.1 Parasitic and Pump-Limited Figures of Merit	75
		2.3.2 Figures of Merit for Optical Components	77
		2.3.3 General Figures of Merit for Rod, Disk, and	
		Active-Mirror Amplifiers	79
		2.3.4 Evaluation of Figures of Merit-Selected Cases	87
	2.4	Optical-Physical Properties Correlations in Laser	
		Glasses	90
	2.5	Properties Neglected in the FOM Formalism	94
		2.5.1 Thermal-Shock Resistance of Laser Glasses	94
		2.5.2 Passive Birefringence in Laser Glasses	95
		2.5.3 Impurities in Laser Glasses	96
		,	
3.	Opti	cal-Pump Sources for Nd:Glass Lasers	99
_	3.1	General Pumping Considerations	99
	3.2	Xe Flashlamp Spectra 1	00
	3.3	A Xe Flashlamp Radiative Model 1	03
	3.4	Xe Flashlamp Pulse-Forming Network Design 1	80

3.5	Slope Efficiency in Nd:Glass Amplifiers	119
3.6	Lifetime Limits of Xe Flashlamps	121
3.7	Time-Resolved Xe Flashlamp Spectra	124

4. Amplified Spontaneous Emission and Parasitic Oscillations

in N	d:Glass Amplifiers	128
4.1	Amplified Spontaneous Emission in Nd:Glass	128
4.2	Parasitic Oscillation in Disk and Active-Mirror	
	Amplifiers	133
4.3	Parasitic Oscillations in Rod Amplifiers	141

Ampla	fiers for High-Peak-Power Nd:Glass Laser Systems	146
5.1	Disk Amplifiers	146
5.2	Active-Mirror Amplifiers	156
5.3	Rod Amplifiers	164
	5.1 5.2	Amplifiers for High-Peak-Power Nd:Glass Laser Systems 5.1 Disk Amplifiers 5.2 Active-Mirror Amplifiers 5.3 Rod Amplifiers

6.	Dama	ge Effects in High-Peak-Power Nd:Glass Laser Systems	170
	6.1	Bulk Damage to Optical Materials	171
	6.2	Surface Damage to Optical Materials	179
	6.3	Thin-Film Damage	183

<u>7.</u>	Nonl	inear Effects in High-Peak-Power Nd:Glass Laser Systems	 188
	7.1	Self-Focusing Theory	 189
	7.2	Small-Scale Self-Focusing	 192
	7.3	Whole-Beam Self-Focusing	 209
	7.4	System Consequences of Self-Focusing	 212
	7.5	Spatial Filters and Imaging	 215
	7.6	X-Factor Analysis	 225
	7.7	Simulation and Modeling of Small-Scale Self-Focusing	
		Effects	 229

8.	The	Design of High-Peak-Power Nd:Glass Laser Systems	236
	8.1	Design Issues in High-Peak-Power Nd:Glass Laser	236
	8.2	A Design Methodology for High-Peak-Power Nd:Glass	
		Laser Systems	241

VIII

8.2.1	First-Order Design 2	42
8.2.2	Design Exploration 2	50
8.2.3	Full-System Simulation 2	53
	<u>.</u>	
Acronyms	2	:59
	z	261
References .	• • • • • • • • • • • • • • • • • • • •	.01
Subject Index	2	271