Contents

Preface pe		ge vii
1	Introduction	1
1.1	The uses of spectroscopy	1
1.2	Scope of this book	4
1.3	The electromagnetic spectrum	5
1.4	Term diagrams and line series	8
1.5	Sources, detectors and dispersers	13
1.6	Survey of spectral regions	16
1.7	Wavelength standards	18
1.8	Units used in this book	20
2	Summary of atomic and molecular structure	23
2.1	The hydrogen atom	23
2.2	Degeneracy and spin	26
2.3	Many-electron atoms: the central field approximation	27
2.4	The Pauli exclusion principle	28
2.5	Features of the central field model	30
2.6	Electrostatic interactions: the quantum numbers L	
	and S	32
2.7	Magnetic interactions: the quantum numbers j and J	38
2.8	Transitions and selection rules	43
2.9	Zeeman and Stark effects	47
2.10	Configuration interaction and auto-ionization	56
2.11	Ionic spectra	60
		ix

2.12	X-ray spectra Hyperfine structure and isotone shift	61 62
2.13	Molecular structure: the Born–Oppenheimer approxi-	02
	mation	66
2.15	Electronic energy of diatomic molecules	67
2.16	Vibrational energy of diatomic molecules	70
2.17	Rotational energy of diatomic molecules	73
2.18	Spectra of diatomic molecules	76
2.19	Remarks on polyatomic molecules	83
2.20	Raman spectroscopy	85
3	Light sources and detectors	87
3.1	Sources of continuous spectra	87
3.2	Intensity standards	90
3.3	The excitation of line spectra	91
3.4	The Einstein probability coefficients	93
3.5	The different types of light source	96
3.6	Traditional sources: flames, arcs, sparks and glow	
	discharges	97
3.7	Recently developed sources: shock tubes, pinch dis-	
	charges, plasma focus, laser-produced plasmas, beam	
	foil source	100
3.8	Absorption spectroscopy: general, the far infra-red	
	region, the far ultra-violet region	104
3.9	Masers and lasers	107
3.10	General remarks on detectors from $1 \ \mu m$ to the far	
	ultra-violet	111
3.11	The photographic plate	112
3.12	The photomultiplier	115
3.13	Detectors for the far ultra-violet	116
3.14	Detectors for the far infra-red	117
4	Dispersion and resolving power. Prism spectrographs	122
4.1	General remarks	122
4.2	Dispersion and resolving power	123
4.3	Slit width and illumination	128
4.4	Prism spectrographs	133
4.5	Deviation and dispersion	133
4.6	Resolving power	137

Contents

4.7	Prism materials for the far ultra-violet and the infra-red	138
18	Image defects: line curvature lens aberrations	130
4.0	Types of spectrograph	140
4 10	Merits of prism spectrographs	142
	Diffusction anotions	1 1 2
5	Dijjruction gratings	144
5.1	Theory of plane grating; condition for maxima	144
5.2	Intensity distribution from ideal diffraction grating	146
5.3	Dispersion	150
5.4	Resolving power	151
5.5	The concave grating	153
5.0	Astigmatism of the concave grating	156
5.7	Croting mountings	158
5.0 5.0	Grating in the infra red	101
5.10	Gratings in the vacuum ultra-violet	100
5.10	Statings in the vacuum utta-violet	100
6	Interferometers	172
The F	abry-Perot interferometer	172
6.1	Basic ideas	172
6.2	Dispersion and free spectral range	175
6.3	Intensity distribution in the interference pattern	176
6.4	Resolving power	182
6.5	Methods of using the Fabry-Perot interferometer	184
6.6	Reduction of measurements	185
0./	Photo-electric use	10/
0.0	Double etaion	109
The M	lichelson interferometer	189
6.9	Basic ideas	189
6.10	Intensity distribution in the tringes	191
6.11	The Michelson interferometer as a scanning spectro-	102
612	meter The Fourier transform mothed	193
0.1 <i>2</i> 6 13	Posolving nower and intensity distribution	193
6.14	Sampling intervals	201
6 1 5	Light-gathering nower (etendue or through-nut)	201
6 1 6	Signal/noise ratio and multipley advantage	203
6.17	Comparison of grating. Fabry-Perot and Fourier	200
	transform spectroscopy	207

Some	other interferometers used in spectroscopy	210
6.18	The wedge etalon	210
6.19	The spherical Fabry-Perot	210
6.20	SISAM	211
6.21	The Mach–Zehnder interferometer	213
7	Microwave and radiofrequency spectroscopy	217
7.1	Introduction	217
7.2	Microwave spectroscopy	220
7.3	Experimental aspects of microwave spectroscopy	220
7.4	The principal information obtained from microwave	
	spectroscopy: rotational constants, hyperfine struc-	
	ture and quadrupole moments, Stark effect, par-	
	ticular cases.	222
7.5	Magnetic resonance spectroscopy: general considera-	
	tions	225
7.6	Electron spin, or paramagnetic, resonance	229
7.7	Nuclear magnetic resonance	231
7.8	Atomic beam magnetic resonance	233
7.9	Types of transition in atomic beam magnetic	
7.10	resonance	236
7.10	Molecular beam magnetic resonance	240
/.11	Applications of tunable lasers to atomic beams	241
7.12	Double resonance experiments	242
7.13	Level-crossing experiments	246
8	Width and shape of spectral lines	249
8.1	Line profiles	249
8.2	Natural broadening	252
8.3	Doppler broadening	258
8.4	Pressure broadening: methods of approach, types of	
	interaction, impact theory, quasi-static theory,	
	experimental aspects	262
8.5	Combination of Gaussian and Lorentzian line pro-	
	files	282
9	Emission and absorption of line radiation	285
9.1	Introduction	285
9.2	Boltzmann distribution and state sum	286
9.3	Einstein coefficients and line strength	287

9.4	Lifetimes	290
9.5	Absorption coefficient	291
9.6	Oscillator strength	294
9.7	The <i>f</i> -sum rule	302
9.8	Optical depth and equivalent width	304
9.9	Curve of growth	307
9.10	Emission lines, source function and radiative transfer	311
9.11	f-values in diatomic molecules	315
10	Experimental determination of transition probabilities and radiative lifetimes	321
10.1	General remarks	321
10.2	Remarks on the calculation of transition prob-	
	abilities	322
10.3	Survey of experimental methods	323
10.4	Emission measurements	324
10.5	Absorption and dispersion measurements: in-	
	rigue	326
10.6	lifetime measurements: delay methods beam foil	520
10.0	method Hanle effect	332
	method, nume encet	001
11	Elementary plasma spectroscopy	342
11.1	Introduction, note on units	342
11.2	Properties of plasmas	343
11.3	Debye radius	344
11.4	Plasma oscillations	347
11.5	Distribution of energy – dissociation equilibrium	351
11.6	Saha's equation for ionization equilibrium	354
11.7	Depression of ionization potential and Inglis-Teller	257
110	limit Tomore and a could be income	35/
11.8	I emperature and equilibrium	338
11.9	Local inermodynamic equilibrium	339
11.10	Cortinuous amission and sharmtion	303
11.11	The continuous character coefficient	267
11.12	Continuous amission	271
11.13	Other continue	3/1
11.14	Aminetions of plasma apastroscopy	271
11.15	Applications of plasma spectroscopy	5/4

11.16	Spectroscopic measurement of temperature: gas kinetic temperature, population and excitation tem- perature, ionization temperature, reversal measure- ments black body temperature intensity of con-	
	tinuous radiation	376
11.17	Spectroscopic determination of electron density: line width, absolute intensity of continuous radia-	
	tion, plasma frequency, Inglis-Teller limit	384
11.18	Non-spectroscopic methods: refractive index,	
	microwave techniques, scattering of laser light	385
Appendix		389
Index		393

xiv