Contents

Ke	Cey to Symbols		xv
1.	Introduction		
	1.1	Electric fields in atoms and waves	1
	1.2	Photoionization and nonresonant scattering	5
	1.3		8
	1.4		11
	1.5	The importance of spectroscopic transitions	13
	1.6	The question of dynamics	14
	1.7	Early history of the quantum theory	15
	1.8	Elucidation of transient phenomena	20
	1.9	References	31
	1.10	Problems	32
2.	Elem	nentary quantum theory	33
	2.1	States and their properties: operators and kets	33
	2.2	Stationary states: eigenkets and eigenfunctions	36
	2.3	Schrödinger's equation; time dependence of ψ	40
	2.4	Kets and bras: orthogonality and normalization	44
	2.5	Quantum systems "in-between" eigenstates	47
	2.6	Eigenvalues and expectation values	52
	2.7	Superposed eigenfunctions and perturbed eigenfunctions	56
	2.8	References	59
	2.9	Problems	59
3.	Elen	nentary electromagnetic theory	62
	2 1	Palatianship between classical and quantum	
	3.1	Relationship between classical and quantum- mechanical theories	62
		meenamear meones	

xii	Contents
ZERE .	Contents

	3.2	Applicability of classical and quantum theories	63
	3.3	When the classical theory may be used	64
	3.4	Waves and particles and their "sizes"	65
	3.5	Electromagnetic waves and quantum systems: size ratios	66
	3.6	Series expansions for electromagnetic fields	70
	3.7	Interaction between multipoles and field asymmetries	73
	3.8	Electromagnetic waves and quantum systems: interactions	77
	3.9	Complex susceptibilities, electric and magnetic	81
	3.10	Effect of susceptibilities on wave propagation	85
	3.11	Absorption coefficient and refractive index	88
	3.12	Phase relationships: absorption, emission, and dispersion	90
	3.13	References	93
	3.14	Problems	93
4.	Inter	action of radiation and matter	95
	4.1	Dipoles and waves: the semiclassical theory	95
	4.2	The transition dipole moment of a hydrogen atom	96
	4.3	Conceptual problems with the theory	102
	4.4	Quantum jumps and the uncertainty principle	104
	4.5	The spin- $\frac{1}{2}$ system	108
	4.6	A geometrical model of the transition process	111
	4.7	Quantum jumps on the sphere of certainty	116
	4.8	Magnetic resonance in bulk and in beams	119
	4.9	The Stern-Gerlach experiment	120
	4.10	State selection in beam experiments	122
	4.11	The Rabi magnetic resonance experiment	124
	4.12	The Ramsey separated oscillating fields experiment	127
	4.13	A thought experiment	128
	4.14	Difficulties with the proposed experiment	130
	4.15	The Bloom transverse Stern-Gerlach effect	134
	4.16	Quantum jumps and superpositions states: conclusion	135
	4.17	References	137
	4.18	Problems	138
5.	Ense	mbles of radiating systems	139
	5.1	Reasons for the use of statistical methods	139
	5.2	Coherent and incoherent perturbations	140
	5.3	Strongly coupled and weakly coupled systems	142
	5.4	Computing expectation values from superposition	172
		coefficients	143

Contents		xiii ^{2,7}		
	5.5	Equations of motion for the operator D	147	
	5.6	The density matrix	150	
	5.7	Properties of the density matrix	152	
	5.8	Effect of relaxation on the density matrix	154	
	5.9	Equations of motion for the density matrix	155	
	5.10	Coherence in ensembles of quantum radiators	157	
	5.11	Creating, observing, and destroying coherence	164	
	5.12	References	168	
	5.13	Problems	169	
6.	Applications to magnetic resonance			
	6.1	Operators representing orbital angular momentum	170	
	6.2	Operators representing spin angular momentum	173	
	6.3	Eigenkets of spin; raising and lowering operators	176	
	6.4	Number of states, normalization, and eigenvalues	179	
	6.5	Spinning particles in nature	182	
	6.6	The effect of a static magnetic field	187	
	6.7	The effect of an oscillating magnetic field	192	
	6.8	The density matrix for magnetic resonance	195	
	6.9	The ensemble-averaged magnetization	200	
	6.10	Solutions to the Bloch equations	204	
	6.11	Absorption and stimulated emission: free-induction decay	209	
	6.12	The crossed-coil nuclear magnetic resonance spectrometer	213	
	6.13	Steady-state magnetization: Curie's law	217	
	6.14	Conventional nuclear magnetic resonance spectroscopy:		
		slow passage	221	
	6.15	Equivalence of transient and steady-state methods	225	
	6.16	Spin echoes	226	
	6.17	References	236	
	6.18	Problems	236	
7.	Generalization to all spectroscopic transitions			
	7.1	The gyroscopic model of the interaction process	238	
	7.2	Electric-dipole-allowed transitions	241	
	7.3	Relaxation and its effect on line widths	247	
	7.4	Phase interruption and pressure broadening	250	
	7.5	Other relaxation processes in gases and solids	254	
	7.6	Optical analogs to magnetic resonance phenomena	256	
	7.7	Photon echoes: qualitative discussion	262	
	7.8	Angle of echo propagation using the gyroscopic model	263	

xiv			Contents
	7.9	Mathematical analysis of $\pi/2$, π echoes	269
	7.10	· · · · · · · · · · · · · · · · · · ·	273
	7.11	Other coherent transient phenomena	276
	7.12	References	281
	7.13	Problems	282
8.	Proj	pagation of light through two-level systems	284
	8.1	General considerations	284
	8.2	Coupling the Bloch equations to the propagating wave	285
	8.3	The slowly varying envelope approximation	291
	8.4	Solutions to the Arecchi-Bonifacio equations	296
	8.5	Optical analog to transient nutation	300
	8.6	Self-induced transparency: the hyperbolic cosecant pulse	302
	8.7	The $2n\pi$ condition: pulse duration and velocity	307
	8.8	Conclusion	311
	8.9	References	313
	8.10	Problems	314
App	endi	x	315
A		Transformation of the Arecchi-Bonifacio equations from dependence on z and t to dependence on v and τ	315
Α	2	Application of the slowly varying envelope approximation to the calculation of terms in the wave equation	
A		General solution to the Bloch equations leading to the	
		nutation effect with damping	317
Inde	ex		323