Contents

PREFACE ACKNOWLEDGMENTS	xv xvii
CHAPTER ONE	(
Fourier Transform Spectroscopy	
INTRODUCTION	1
GENERAL ADVANTAGES OF FOURIER TRANSFORM SPECTROMETERS	1
SPECIFIC ADVANTAGES AND DISADVANTAGES OF INTERFEROMETERS	2
TWO-BEAM INTERFEROMETERS, THE ULTIMATE IN SPECTROMETERS	5
QUALITY FACTORS	7
SPECTRAL RANGES	9 10
APPLICATIONS OF FOURIER TRANSFORM SPECTROSCOPY CONCLUSIONS	10
REFERENCES	15
CHAPTER TWO	
Historical Sketch and Crucial Ideas	
INTRODUCTION	16
MICHELSON AND HIS INTERFEROMETER	17
INTERFEROMETERS	18
FUNDAMENTALS OF FOURIER TRANSFORM SPECTROSCOPY	19
JACQUINOT ADVANTAGE	19
FELLGETT ADVANTAGE	23
STRONG'S GROUP	25
OTHER PIONEERING FOURIER TRANSFORM SPECTROSCOPISTS	26 30
CONCLUSIONS REFERENCES	30
REFERENCES	, 30

viii	CONTENTS

CHAPTER THREE	
Fourier Analysis and Interferometry	
INTRODUCTION	
DERIVATION OF THE BASIC INTEGRAL FOR FOURIER TRANSFORM SPECTROSCOPY	
SHORT DERIVATION OF THE BASIC INTEGRAL FOR FOURIER TRANSFORM SPECTROSCOP	Ý
COMPUTING SPECTRA	
COHERENCE IN THE INTERFEROMETER	
APPLICABILITY OF THE BASIC INTEGRAL EQUATION OF FOURIER TRANSFORM	
SPECTROSCOPY	
PROVING THAT THE INTERFEROGRAM IS THE AUTOCORRELATION FUNCTION OF THE	
ELECTRIC FIELD	
CONCLUSIONS	
REFERENCES	
CHAPTER FOUR	
Sample Calculations of Spectra from Interferograms	
INTRODUCTION	
ACADEMIC EXAMPLE OF THE USE OF EQ. (3-25)	
PRACTICAL EXAMPLE OF THE USE OF EQ. (3-25): THE DOUBLET PROBLEM	
CONCLUSIONS	
REFERENCES	
CHARTER EWE	
CHAPTER FIVE	
Apodization—Mathematical Filtering	
INTRODUCTION	
INTERFEROGRAM PRODUCED BY A MONOCHROMATIC SOURCE	
COMPUTED SPECTRUM FROM INTERFEROGRAMS USING FINITE SCANS	
APODIZATION AND RESOLUTION	
INSTRUMENT LINE SHAPE AND CONVOLUTIONS	
MATHEMATICAL FILTERING	
CONCLUSIONS	
REFERENCES	
CHAPTER SIX	
Resolution	
INTRODUCTION	
INSTRUMENT BROADENING OF LINE (WITHOUT AND WITH APODIZATION)	
·	

CONTENTS	ix
SEPARATION OF RESONANCES WITHOUT APODIZATION	65
COMPARISON OF LINE BROADENING AND THE SEPARATION OF RESONANCES	66
COUNTING FRINGES AND RESOLUTION	66
CONCLUSIONS AND GENERAL COMMENTS	67
REFERENCES	68
CHAPTER SEVEN	
Sampling Intervals	
INTRODUCTION	69
WHY SAMPLE?	69
SHAH FUNCTION	70
RELATING THE SAMPLED AND THE COMPLETE SPECTRA	72
EXPERIMENTAL COMMENTS	75
CONCLUSIONS	76
REFERENCE	77
CHAPTER EIGHT	
Asymmetric Interferometers and Amplitude Spectroscopy	
INTRODUCTION	78
GENERAL THEORY AND REFLECTION STUDIES: SOLIDS—SINGLE SURFACE	81
COMPLEX INVERSE FOURIER TRANSFORM OF THE INTERFEROGRAM	88
TRANSMISSION STUDIES: SOLIDS—SINGLE PASS (NO CHANNEL SPECTRA)	88
phase errors of $\pm 2\pi$ (integer)	92
SHIFTING THE COMPUTATION ORIGIN TO THE GRAND MAXIMUM POSITION	94
TRANSMISSION STUDIES: SOLIDS—SINGLE PASS (WITH CHANNEL SPECTRA)	96
TRANSMISSION STUDIES: GASES—SINGLE PASS (BELL'S INTERFEROMETER) TRANSMISSION STUDIES: GASES—DOUBLE PASS (ORDINARY MICHELSON	97
INTERFEROMETER)	98
INTERFEROGRAMS FOR TRANSMISSION STUDIES	99
TRANSMISSION STUDIES: LIMITS ON SAMPLE THICKNESS	100
TRANSMISSION STUDIES: SOLID—TWO PASSES	101
TRANSMISSION STUDIES: LIQUIDS—DOUBLE PASS	102
ACCURATE LOW-TRANSMITTANCE MEASUREMENTS	105
CONCLUSIONS	106
REFERENCES	106
CHAPTER NINE	
Beamsplitters	
INTRODUCTION	108
SELF-SUPPORTING DIELECTRIC BEAMSPLITTERS	109
POLARIZATION IN DIELECTRIC-SHEET BEAMSPLITTERS	118

\boldsymbol{x}		CONTENTS
	•	

120 124 125 127 128
129 130 136 137 138 138 139
141 142 145 147 148 150 151
153 154 157 159 166 167 168

CONTENTS	xi
CHAPTER THIRTEEN	
Procedures for Choosing Experimental Parameters	
INTRODUCTION	169
EXPERIMENTAL PARAMETERS	170
CONCLUSIONS	178
REFERENCES	179
CHAPTER FOURTEEN	
Sample Interferograms and Spectra	
INTRODUCTION	180
REPRODUCIBILITY OF SCANS AND SIGNAL AVERAGING	181
READING INTERFEROGRAMS	183
TRANSMISSION STUDIES OF SOLIDS	188
TRANSMISSION STUDIES OF LIQUIDS	189
TRANSMISSION STUDIES OF GASES	191
REFLECTION STUDIES	192
EMISSION STUDIES	192
PLANETARY ATMOSPHERES AND ASTRONOMY	195
CONCLUSIONS REFERENCES	198 198
CHAPTER FIFTEEN	
Lamellar Grating Interferometers	
INTRODUCTION	200
PLANE, LAMELLAR GRATING INTERFEROMETERS AND EFFICIENCY OF THE	
BEAMSPLITTER	201
DIFFRACTION THEORY AND LAMELLAR GRATINGS	206
HIGH-ORDER DIFFRACTION PROBLEMS, $\sigma_{ m c}$, AND EFFICIENCY FOR $\sigma \geq \sigma_{ m c}$	210
CAVITY EFFECT, σ_L , AND RESOLUTION	213
SHADOWING	215
WAVENUMBER SHIFT DUE TO OFF-AXIS OPTICAL SYSTEM SAMPLE SPECTRA FROM PLANE, LAMELLAR GRATING INTERFEROMETERS	215 217
SAMPLE SPECIKA FROM PLANE, LAMELLAR GRATING INTERFEROMETERS SPHERICAL, LAMELLAR GRATING INTERFEROMETERS	220
EFFECTS OF NONCOLLIMATION ON THE COMPUTED SPECTRUM	222
SAMPLE SPECTRA FROM A SPHERICAL, LAMELLAR GRATING INTERFEROMETER	226
CONCLUSIONS	229
REFERENCES	229

xii	CONTENTS
CHAPTER SIXTEEN	
Computation Techniques	
INTRODUCTION CONVENTIONAL COMPUTATION TECHNIQUES CONVENTIONAL VERSUS COOLEY—TUKEY COMPUTATIONS CONCLUSIONS REFERENCES	231 232 234 236 236
CHAPTER SEVENTEEN	
The Cooley–Tukey Algorithm	
Ralph W. Alexander and Robert J. Bell	
INTRODUCTION INTRODUCTION TO THE BINARY NUMBER SYSTEM PREPARING FOR THE COOLEY-TUKEY ALGORITHM COOLEY-TUKEY ALGORITHM FOR $N=8$ GENERALIZATION FOR $N=2^n$ SPECIAL CASE OF $S(j)$ REAL SPECIAL CASE OF $S(j)$ REAL AND EVEN SPECIAL CASE OF A REAL, ODD FUNCTION CONCLUSIONS REFERENCES	237 238 239 240 250 251 254 256 257
CHAPTER EIGHTEEN Minicomputers and Real-Time Fourier Analysis Ralph W. Alexander	
INTRODUCTION REAL-TIME FOURIER ANALYSIS OF A ONE-SIDED INTERFEROGRAM INITIALIZATION PARABOLIC FIT COMPUTATION OF THE FOURIER TRANSFORM CALCULATION OF $S(j)$ $\cos[2\pi\sigma_k(j\Delta\delta+\varepsilon)]$ EXAMPLE: COMMERCIAL REAL-TIME SYSTEMS CHOICE OF A COMPUTER CONCLUSION REFERENCES	258 259 260 260 261 261 264 264 265

CONTENTS	:
CHAPTER NINETEEN	
Commercial Instruments	
INTRODUCTION RIIC OR BECKMAN INSTRUMENTS, INC. (3–500 cm ⁻¹) DIGILAB, INC. (5–10,000 cm ⁻¹) GRUBBS-PARSONS (10–675 cm ⁻¹) CODERG (10–800 cm ⁻¹) IDEALAB (10–10,000 cm ⁻¹) POLYTEC GmbH (10–1000 cm ⁻¹) CONCLUSIONS REFERENCES	
APPENDIX A Optical Alignment of a Michelson Interferometer	
INTRODUCTION COARSE ADJUSTMENT INTERMEDIATE AND FINE ADJUSTMENT	
APPENDIX B	
Computer Programs	
Ralph W. Alexander and Harold V. Romero	
PROGRAM USING COOLEY-TUKEY ALGORITHM TABLE OF SYMBOLS PROGRAM FOR REAL-TIME ANALYSIS	·
APPENDIX C	
Mirror Tilt, the Cat's-Eye Retroreflector	
INTRODUCTION CAT'S-EYE RETROREFLECTOR (CONVEX SECONDARY) CAT'S-EYE RETROREFLECTOR (CONCAVE SECONDARY) REFERENCES	

xiv	CONTENTS
APPENDIX D	
Rapid-Scan Fourier Transform Spectroscopy	318
REFERENCES	320
AUTHOR BIBLIOGRAPHY	321
SUBJECT BIBLIOGRAPHY	338
AUTHOR INDEX	365
SUBJECT INDEX	370