TABLE OF CONTENTS

ACKNOWLEDGMENTS	VII
PREFACE	IX
CHAPTER I. INTRODUCTION	
1. Historical Summary	1
2. Radiative Transfer Equations	3
3. Local Thermodynamic Equilibrium	8
4. Pure Scattering	. 10
CHAPTER II. THE LINE SOURCE FUNCTION	
1. The General Form of $S_{\rm L}$	12
2. Steady State Equations	13
3. Specific Form of $S_{\rm L}$	16
4. An Integral Form for $S_{\rm L}$	18
5. The Form of Φ_{ν} and the Escape Probability	22
6. The Destruction Probability	24
7. Photon Random Walk, Degradation Length and Thermalization Length	27
8. Effectively Thick and Effectively Thin	31
9. The Escape Coefficient	32
10. Rate Coefficients	34
11. Free-Bound Continua	35

CHAPTER III. THE TWO-LEVEL CASE: ONE SPECTRAL LINE

1. ε , r_0 , ϕ_v , and <i>B</i> Constant	40
2. The Influence of a Temperature Gradient	43
3. The Influence of a Gradient in ε	48
4. The Influence of a Gradient in r_0	49
5. The Influence of a Gradient in ϕ_{y}	51
6. The Influence of a Moving Atmosphere	53
7. The Influence of Frequency Redistribution	55

TABLE O	F CONTENTS

8	The Influence of Anisotropic Scattering	63
9.	The Influence of a Finite Atmosphere	63
10.	The Influence of Horizontal Structure	65
	a. Periodic Structure	67
	b. The Isolated Cylinder	69
	c. The Imbedded Cylinder	70

CHAPTER IV. THE MULTILEVEL CASE: TWO OR MORE LINES

1.	General Comments	79
2.	Consistency Checks	83
3.	Two Levels Plus Continuum	86
4.	Upper Level Multiplets	92
5.	Lower Level Multiplets	98
6.	Metastable Levels	100
7.	Two Lines in Series	105
8.	Three Line Loops	106
9.	Four-Line Metastable Loops	110
10.	Four-Line Closed Loop	114
11.	Interlocking Effects on a Strong Line of Fixed ε , r_0 and λ	117
12.	Discussion	119

CHAPTER V. LINE PROFILES

1.	The Eddington-Barbier Relation	121
2.	Depth Dependence of S_{ν} Near Line Center	124
3.	Frequency Dependence of S_v	125
4.	Mapping of S_v into I_v	126
5.	Microturbulence, Macroturbulence, and Differential Motion	130
6.	Line Cores	136
7.	Line Wings	137
8.	Center-Limb Effects	141
9.	Profile Synthesis	144
10.	A Standard Set of Data	147
11.	Evaluation of $\Delta \lambda_D$ from Cores of Strong Lines – One μ Position	152
12.	Evaluation of $\Delta \lambda_D$ from Cores of Strong Lines – Center-Limb Data	156
13.	Analysis of Line Wings	164
14.	Analysis of Line Shoulders	172
15.	Comments on Weak and Moderately Strong (Photospheric) Lines	175
16.	A Test for LTE Using Equivalent Widths	176
17.	Comparisons of Empirically Derived Line Source Functions to the	
	Continuum Source Function	179
18.	Analysis and Restoration of Line Profile Data	183

XII

TABLE OF CONTENTS

CHAPTER VI. TOTAL INTENSITIES OF LINES

1.	Introduction	186
2.	Curve-of-Growth for Absorption Lines	186
3.	Emission Line Fluxes	190
4.	The Two Level Atom	193
5.	Upper Level Doublets	195
6.	Lower Level Doublet and Metastable Level	195
7.	Three Line Loop	196
8.	Added Comments	200

CHAPTER VII. THE LINE BLANKETING EFFECT

1.	Definition of Terms	202
2.	Historical Summary	203
3.	Mathematical Derivation of Blanketing Terms	204
4.	The c Term	206
5.	The <i>t</i> Term	209
6.	Integrated Quantities	214
7.	Influence on Temperature Structure	222
8.	Multilevel Effects	224
9.	Early Stellar Types	227
10.	The Solar Case	227
11.	The Cayrel Mechanism	234

CHAPTER VIII. NUMERICAL METHODS

1. Introduction	237
2. The Integral Flux-Divergence Equations	237
3. Required Frequency Bandwidth	244
4. Frequency Mapping	246
5. Free-Bound Continua	247
6. Simultaneous Solution of the Integral Flux-Divergence Equations	249
7. A Differential Equation Method	253
8. Extension to the Multilevel Case and Linearization	258
9. Core Saturation Method	258

INDEX OF SUBJECTS

262

÷