Contents

Chapter 2	1 Linear Optics: Wave Propagation in Anisotropic Materials	1
1.1	Lorentz Model—harmonic oscillator model of the refractive index; dispersion and absorption	1
1.2	Anisotropy—tensor form of the dielectric constant; rotation	T
	to the principal dielectric axes	6
1.3	Wave Propagation in an Anisotropic Crystal-the two allowed polarizations	8
1.4	The Index Ellipsoid—method to find the polarization di- rections; uniaxial and biaxial crystals; the extraordinary	-
15	index at an angle θ to the optic axis	10
	Refraction at the Surface of an Anisotropic Crystal—the k vector construction	13
1.6	Applications of Birefringence—compensation of the dis- persion of a material; quarter-wave plates and half-wave	
	plates	15
	Orientation of the Crystal	16
1.8	Biaxial Crystals—the two-sheeted k vector surface; the polarization on these surfaces	17
1.9	Optical Activity	20
	Induced Anisotropy	21
	Electrooptic Effect—the contracted notation for the 18 independent elements; electrooptic modulation; the half-	
	wave voltage	21
Chapter	2 Nonlinear Optics	25
2.1	Introduction—the nonlinearity of the polarization and the generation of sidebands	25
2.2	Nonlinearities of the Polarization-generation of second-	0
	harmonic, dc, sum and difference frequencies	26
		vii

0.0		•••
2.3	The Anharmonic Oscillator	29
2.4	Definition of the Electric Field-the definition of the electric	
	field with many frequency components; definition of positive	•
	and negative frequencies	29
2.5	The Nonlinear Polarization-solution of the anharmonic	
	oscillator equation; expression for the first- and second-	
	order polarization	30
2.6	Extension to Three Dimensions in Three Mutually Interacting	
	Fields—permutation of the frequencies and the indices	32
2.7	Miller's Rule-relation between the second-order suscepti-	
	bility and the linear susceptibilities	33
2.8	The Coefficients Used Experimentally-relation between	
	d and χ .	34
2.9	Contraction of the Indices-definition of a column vector F,	
	contraction of the indices; an example	34
2.10	Crystal Symmetry-derivation of the matrix elements of a	
	representative class; Kleinman's symmetry condition; the	
	nonlinear susceptibility matrix and the piezoelectric matrix	35
2.11	Definition of d_{eff}	37
	An Example	39
2.13	The Coupled Amplitude Equations—derivation of the three	
	coupled amplitude equations that govern a general three-	
	frequency interaction; expressions for output power in the	
	small-signal approximation	41
2.14	The Manley-Rowe Relations-gain in difference frequency	
	generation; the parametric oscillator	44
2.15	Second-Harmonic Generation-the output power per unit	
	area for the small-signal approximation; exact solution of	
	the coupled amplitude equations in the phase-matched case	46
2.16	Output Angle	48
	The Electrooptic Coefficient—relation between the classical	
	electrooptical coefficient and the nonlinear optical co-	
	efficient	51
2.18	Nonlinear Interactions in Reflection	52
2.19	Dimensions-relation between MKS units and c.g.s. units	52
Chapter	3 Phase Matching	54
-		34
3.1	Introduction-the importance of phase matching to non-	
	linear interactions	54
3.2	Power Flow in the Non-Phase-Matched Case-coupling of	
	the power back and forth between input and harmonics	54

viii

CONTENTS

3.3	Quasi-Phase-Matching Methods—methods to adjust the	58
3.4	phase difference periodically Angle Phase Matching—phase-matching using the bire- fringence of a crystal. Type I and Type II phase matching— diagrams showing possible interactions for a given phase- matching angle	58
3.5	The Expression for d_{eff} for the Different Crystal Classes— equations and tables giving the polarization of the output as a function of the polarizations and the direction of transmission of the input	61
3.6	Disadvantages of Angle Phase Matching—the effects of walk-off between the extraordinary and the ordinary rays; divergence of a focused beam	67
3.7	Temperature-Dependent Phase Matching—noncritical phase matching in the $x-y$ plane by temperature tuning of the	68
• •	indices	
3.8	Phase Matching in Biaxial Crystals	69
3.9	Other Phase-Matching Methods—phase matching in optically active media; phase matching using Faraday rotation; interactions between noncollinear beams	70
3.10) Competing Interactions—simultaneous phase matching be- tween several interactions; absorbtion of the pump radiation	71
Chapter	4 Nonlinear Materials	73
4.1	Historical Introduction—brief history of the development of nonlinear materials, their use, measurement, and character-	
	ization	73
4.2	Quality Assessment of Nonlinear Materials—linear and non- linear SHG characteristics; effective crystal length	77
4.3	The Accurate Measurement of Optical Nonlinearity— absolute measurements; Maker fringe technique; sign of nonlinearity; pulsed-laser techniques	81
		84
4.4		04
4.5	Lithium Niobate—general properties; growth; poling; assess- ment; refractive indices; effects of composition; damage problems; "hot" LiNbO ₃	86
4.6	•	92
4.7		94

ix

x	CONTE	INTS
4.8 4.9	Lithium Iodate—general properties; refractive indices Proustite—general properties; refractive indices	98 99
Chapter	5 Second-Harmonic Generation	102
5.1	Introduction	102
5.2	Plane Wave Interactions—low-conversion efficiency solutions; high conversion	102
5.3	Finite Beam Size—small beam area: limitations of focusing; optimum focusing for TEM ₀₀ mode; phase-matching limitations for multimode beams; effects of source linewidth	105
5.4	Effects of Mode Structure on SHG-SHG from randomly phased modes	108
5.5	SHG from Mode-Locked Lasers	111
5.6	Intracavity SHG—Three- and four-level laser rate equations with SHG; optimum coupling	112
5.7		120

Chapter 6 Parametric Up-Conversion

6.1	Introduction-sum frequency generation; limitation to up-	
	conversion; introductory theory; infrared detection;	
	single- and multiple-mode approaches	124
6.2	General Points-Manley-Rowe relations; quantum-conver-	
	sion efficiency for multimode converter	127
6.3	Focused Beams—Small area A; single-mode operations;	
	optimum focusing	128
6.4	Effects of Phase Matching	130
	Tuning-tunable infrared frequency; tuning ranges	130
	Frequency Bandwidth-narrow- and broad-band operation	132
	Solid Acceptance Angle for Infrared Radiation-critical,	
	noncritical, and noncollinear phase matching	134
6.5	Comparison of the Single-Mode and Multimode Up-Con-	
	verters-blackbody modes and number of quanta per	
	mode; relative sensitivity of multimode and single-mode	
	up-converters in various situations; optimization	139
6.6	Noise Properties-comparison of up-converter and photocon-	
	ductive detectors; characteristics of the up-converter as	
	infrared detector; parametrically generated noise in the up-	
	converter	142

124

CONTENTS

6.7	Parametric Image Converters Principles—simple theory of image transfer Mode Analysis—use of analysis of Section 6.5 for evaluation of image converter; sensitivity to blackbody sources Experimental Status of Up-Conversion	146 149 152
	* * *	
Chapter	7 Optical Parametric Amplification and Oscillation	153
7.1	Introduction—the Manley–Rowe relations; gain in difference frequency generation; comparison with microwave para- metric oscillators	153
7.2	Amplifier and Oscillator Gain Coefficients—solution of the coupled equations; gain coefficient for the amplifier and for	
	the oscillator	154
7.3	Effects of Phase Mismatch	156
7.4	Parametric Oscillation-the first oscillator of Giordmaine and Miller; the continuous-wave oscillator of Smith	157
7.5	Mode Hopping and the Cluster Effect-frequency and ampli-	
7.6	tude instabilities of the doubly resonant oscillator Power Limiting and Gain Saturation—Siegman's power limiter; saturation of the gain; coupling between the os-	161
7.7	cillator and the pump; the ring resonant oscillator More Stable Configurations—servo control of the doubly resonant oscillator; the backward wave oscillator; the	164
	singly resonant parametric oscillator	169
7.8	•••	103
7.8 7.9	Requirements for the Laser Pump—the multimode pump of Harris; pump requirements for the singly resonant oscil-	173
	lator	174
Appendix 1 Tensors		177
Append	ix 2 Nonlinear Optical Susceptibilities	180
References		186
Index		197

xi