Contents

1.	Intr	oduction to Optical Phase Conjugation	1
		What a Phase-Conjugated Wave Is	1
	1.2	Ways of Generating a Phase-Conjugated Wave	5
		1.2.1 OPC in Static and Dynamic Holography	5
		1.2.2 Parametric Methods of OPC	7
		1.2.3 What Stimulated Scattering Is	9
		1.2.4 Discrimination Mechanism of OPC-SS	11
		1.2.5 Comparison of Various Methods	13
	1.3	What Is OPC For?	14
		1.3.1 Self-Compensation for Distortions	14
		1.3.2 Self-Targeting of Radiation	17
		1.3.3 Control of Spatial-Temporal Structure	18
		1.3.4 Scientific Applications	22
	1.4	Literature	24
2.	Phy	vsics of Stimulated Scattering	25
	-	Steady-State Picture of Stimulated Brillouin Scattering	25
		Spontaneous and Stimulated Scattering;	
		Quantum Representation of SS	31
	2.3	Other Types of Stimulated Scattering	35
		2.3.1 Stimulated Raman Scattering (SRS) by Molecular	
		Vibrations	35
		2.3.2 Other Types of SRS	36
		2.3.3 Stimulated Rayleigh-Wing Scattering (SRWS)	37
		2.3.4 Stimulated Temperature Scattering Due to Absorption	
		(STS-II)	39
		2.3.5 General Properties of Stimulated Scattering	40
	2.4	Effect of Pump Depletion in Stimulated Scattering	41
	2.5	Dynamics of Stimulated Scattering	45
		2.5.1 Spectral Width of Stimulated Scattering	46
		2.5.2 Stimulated Scattering Build-Up Wave	47
		2.5.3 Calculation of SS Dynamics	48
		2.5.4 Determination of Threshold in Nonstationary Condition.	50
		2.5.5 Above-Threshold Behavior of SS and Loop Scheme	52

		lated Scattering of Non-Monochromatic Radiation	53
		Quasi-Static Case	53
		Broad-Band Pump in a Short Medium	54
		Effect of Group Velocity Detuning	55
		ation of Anti-Stokes Components – Four-Wave Processes	57
		Presentation of Nonlinear Polarization	57
	2.7.2	Excitation of Anti-Stokes Components Under	
		Forward Scattering	59
		SBS of Counterpropagating Waves	60
	2.8 Polar	ization Properties of Stimulated Scattering	63
	2.9 Litera	ature	64
3.		s of Speckle-Inhomogeneous Fields	66
	3.1 Centr	al Limit Theorem. Gaussian Statistics of Speckle Fields	66
	3.1.1	Characteristic Function	67
	3.1.2	Central Limit Theorem	68
	3.1.3	Gaussian Statistics of Speckle Fields	70
		bolic Wave Equation	72
	3.3 Chara	acteristic Dimensions of Speckle-Structure Inhomogeneities	73
		sed Speckle Field	76
		cations of Wavefront	79
	3.6 Litera	ature	84
4.	OPC by F	Backward Stimulated Scattering	85
	4.1 Expe	rimental Discovery of OPC-SS	85
	4.2 Discr	imination Conditions Against Non-Conjugated Waves	
	in Lig	ght Guides	87
	4.3 The S	Specklon	91
	4.4 Struc	cture of Uncorrelated Waves	94
	4.5 Expe	rimental Investigation of Discrimination in a Light Guide.	96
	4.6 OPC	-SS in Focused Beams	98
	4.6.1	Speckle Beam	98
	4.6.2	Ideal Beam	101
	4.6.3	Weakly Distorted Beam	102
		stration Methods and Quality Estimation of OPC	103
		ature	107
5.	. Specific I	Features of OPC-SS	108
		ory of the Specklon	108
		"Serpentine" Distortions	109
		2 Spectral and Angular Distortions	113
		Specklon Envelope Equation	117
		• •	

		Contents	IX	
	5.2	Specklon Phase Fluctuations	119	
		5.2.1 Temporal Phase Fluctuations	119	
		5.2.2 Transverse Coherentization	120	
	5.3	Theory of OPC-SS in Focused Speckle Beams	121	
		OPC of Depolarized Radiation	124	
		5.4.1 Theory of OPC-SS of Depolarized Radiation	125	
		5.4.2 Experimental Results	127	
	5.5	Nonlinear Selection of Non-Monochromatic Radiation	130	
	5.6	Effect of Saturation in OPC-SS	133	
		OPC-SS with Reference Wave	136	
		5.7.1 SS of Radiation with Incomplete Speckle Modulation	136	
		5.7.2 SS with Reference Wave Through Focusing with a Lens	138	
		5.7.3 OPC-SS of Under-Threshold Signals	140	
		5.7.4 OPC-SS of Large-Diameter Beams	141	
	5.8	OPC by Other Types of SS	142	
		Literature	143	
6.	OP	C in Four-Wave Mixing	144	
	6.1	Principles of OPC-FWM	144	
	6.2	Selective Properties of OPC-FWM	146	
	6.3	Polarization Properties of OPC-FWM	150	
	6.4	Effect of Absorption on OPC-FWM Efficiency	152	
	6.5	Theory of Coupled Waves	153	
	6.6	Nonstationary Effects in OPC-FWM	158	
	6.7	Reference Wave Instability	161	
		6.7.1 Self-Focusing of a Beam as a Whole	161	
		6.7.2 Plane Wave Instability	162	
		6.7.3 Instability of Counterpropagating Waves	165	
		6.7.4 Effect of Wave Self-Action on Efficiency and Quality of		
		OPC-FWM	168	
	6.8	Literature	169	
7.	No	nlinear Mechanisms for FWM	171	
		Molecular Orientation	171	
		Saturation Nonlinearities	173	
		7.2.1 Phenomenological Approach	173	
		7.2.2 Resonant Gases	175	
		7.2.3 Absorbing Dyes and Thermal Effects	180	
		7.2.4 Gain Saturation	182	
	7.3	Nonlinearities in Semiconductors	183	
		7.3.1 Bound Electron Nonlinearity	183	
		7.3.2 Nonparabolicity of Conduction Band	184	

X	Contents

		7.3.3 Generation of Free Carriers	185
		7.3.4 Photorefractive Crystals	187
	7.4	SBS Nonlinearity and Parametric SBS Generation	189
	7.5	Literature	192
8.	Oth	ner Methods of OPC	194
		OPC by a Reflecting Surface (OPC-S)	194
		8.1.1 Principle of OPC-S	194
		8.1.2 Mechanisms of Surface Nonlinearity	196
	8.2	OPC in Three-Wave Mixing (TWM)	199
	8.3	Medium Parameter Modulation at Doubled Frequency	201
		OPC of Sound Waves	203
		Quasi-OPC: Retroreflectors	205
		Exotic Methods of OPC	209
		8.6.1 Photon Echo	209
		8.6.2 Bragg's Three-Wave Mixing	211
		8.6.3 OPC by Superluminescence	213
	8.7	OPC in Forward FWM	214
	8.8	Resonators with Phase-Conjugate Mirrors (PCM)	217
		8.8.1 Structure of OPC-FWM Resonator Modes	217
		8.8.2 Matrix Method in OPC Resonator Theory	220
		8.8.3 Selection of Mode with Lowest Transverse Index	223
		8.8.4 Resonators with an SBS Cell	226
	8.9	Literature	227
Re	fere	nces	229
Su	bjec	t Index	249