I. GUIDED-WAVE OPTICS ON SILICON: PHYSICS, TECHNOLOGY AND STATUS

by B. P. Pal (New Delhi, India)

§1.	INTRODUCTION	3
§ 2.	Physics and Analysis of Optical Waveguides	6
	2.1. Planar waveguides	6
	2.2. Power carried by a guided mode in a planar waveguide	12
	2.3. Waveguiding in three-dimensional structures	13
	2.4. Multilayer waveguides	20
§ 3.	TECHNOLOGY OF SILICON-BASED OPTICAL WAVEGUIDES	25
§4.	GUIDED-WAVE OPTICAL COMPONENTS ON SILICON	38
§ 5.	Active Waveguides on Silicon	49
§ 6.	Conclusions	50
Аск	NOWLEDGEMENTS	51
Refe	BRENCES	51

II. OPTICAL NEURAL NETWORKS: ARCHITECTURE, DESIGN AND MODELS

by Francis T. S. Yu (University Park, PA, USA)

§1.	INTRODUCTION	63
§ 2.	Optical Associative Memory	66
§ 3.	Optical Neural Networks	69
	3.1. Two-dimensional implementation	69
	3.2. LCTV-based optical neural networks	71
	3.3. Compact optical neural networks	73
	3.4. Mirror-array interconnected neural networks	74
	3.5. Optical disk-based neural networks	77
§4.	Neural Network Models	80
	4.1. Hopfield model	81
	4.2. Back-propagation model	83
	4.3. Orthogonal-projection model	84
	4.4. Multilevel recognition model	87
	4.5. Interpattern-association model	89
	4.6. Hetero-association model	96
	4.7. Space time-sharing model	100

§ 5.	REDUNDANT INTERCONNECTION NEURAL NETWORKS	5
	5.1. Redundant-interconnection IPA model	6
	5.2. Minimum redundant IPA model	8
	5.3. Simulated and experimental results	0
§6.	OPTICAL IMPLEMENTATION OF HAMMING NETS	3
	6.1. Hamming net model	4
	6.2. Optical implementation	7
	6.3. Experimental demonstrations	0
§7.	INFORMATION STORAGE CAPACITY	1
	7.1. Upper bound	3
	7.2. Lower bound	5
	7.3. Moment-invariant neurocomputing	6
§ 8.	SELF-ORGANIZING OPTICAL NEURAL NETWORKS	1
	8.1. Kohonen's feature map	1
	8.2. Unsupervised learning	5
§ 9.	CONCLUSION	2
Refe	RENCES	3

III. THE THEORY OF OPTIMAL METHODS FOR LOCALIZATION OF OBJECTS IN PICTURES

by L. P. Yaroslavsky (Bethesda, MD, USA)

§1.	INTRODUCTION	147
§ 2.	THE ACCURACY AND RELIABILITY OF THE LOCALIZATION OF TWO-DIMENSIONAL	
	Objects on a Plane	149
	2.1. Localization of a single object in the presence of additive white Gaussian	
	noise: optimal localization device and two types of localization errors	149
	2.2. Localization of a single object in the presence of additive white Gaussian	
	noise: potential accuracy of coordinate measurements	152
	2.3. Localization of a single object in the presence of additive Gaussian noise:	
	measurement accuracy for non-optimal estimator; localization in non-white	
	noise	156
	2.4. Optimal localization in color pictures	159
	2.5. Localization of an object in the presence of additive Gaussian noise: reliability	
	of coordinate measurements	162
	2.6. Localization reliability in the presence of additive white Gaussian noise: more	
	accurate estimation and approximation of the localization error distribution	
	density	165
	2.7. Localization reliability in the presence of additive white Gaussian noise and	
	multiple outside objects	169
§ 3.	LOCALIZATION OF OBJECTS ON A COMPLEX BACKGROUND WITH A MINIMUM OF	
	Anomalous Errors	172
	3.1. Formulation of the problem	172
	3.2. Localization of an exactly known object for the spatially homogeneous opti-	
	mality criterion	174
	3.3. Localization of inexactly known objects	181
	3.4. Reliable localization for spatially inhomogeneous objects	185
	S.A. Rehable localization for spatially infollogeneous objects	100

XVI

2.5. Delieble le cellentien in blumed nicture	107
3.5. Reliable localization in blurred pictures	187
3.6. Optimal localization in multicomponent pictures with cluttered background	188
3.7. Phase-only-, binary phase-only-, minimum average correlation energy-, entropy-optimized, and other filters for optical pattern recognition; reliable	
localization and picture contours	189
3.8. Selection of reference objects from the standpoint of localization reliability	196
§ 4. CONCLUSION	199
Acknowledgements	200
References	200

IV. WAVE PROPAGATION THEORIES IN RANDOM MEDIA BASED ON THE PATH-INTEGRAL APPROACH

by M. I. Charnotskii, J. Gozani, V. I. Tatarskii and V. U. Zavorotny (Boulder, CO, USA)

§1.	INTRODUCTION	205
§ 2.	PROBLEM FORMULATION AND GOVERNING EQUATIONS	209
	2.1. Parabolic equation for a field in a random medium	209
	2.2. Moment equations	211
	2.3. Plane-wave-type fourth-moment equations	214
	2.4. Generalization of the problem	215
§ 3.	INTRODUCTION TO PATH INTEGRALS	217
	3.1. Derivation of path-integral representation of the parabolic equation solution	217
	3.2. Unconditional and conditional path integrals	220
	3.3. The probabilistic interpretation	221
	3.4. Phase-space path integral	227
§4.	PATH-INTEGRAL REPRESENTATIONS OF WAVE FIELDS IN INHOMOGENEOUS MEDIA.	229
-	4.1. Basic unconditional and conditional Feynman path-integral representations	229
	4.2. Velocity representation for path-integral variables	231
	4.3. Variational operator representation	233
	4.4. Plane-wave expansion	234
	4.5. Orthogonal expansion of paths	237
§ 5.	PATH-INTEGRAL REPRESENTATIONS OF MOMENTS	241
	5.1. Second-moment path-integral representations	242
	5.2. Fourth-moment path-integral representations	244
	5.2.1. Spherical wave expansion	244
	5.2.2. The outgoing plane-wave expansion	246
	5.2.3. The incoming plane-wave expansion	248
	5.2.4. The mixed plane-wave expansion	249
§6.	THE CONNECTION BETWEEN HEURISTIC APPROXIMATIONS AND PATH-INTEGRAL	
	Representations	251
	6.1. Heuristic field approximations	251
	6.2. Fourth-moment heuristic approximations	254
	6.3. An orthogonal expansion of the path integral for the fourth moment	257
§7.	CONCLUSIONS	261
Аск	NOWLEDGEMENTS	262
Refe	BRENCES	262

V. RADIATION BY UNIFORMLY MOVING SOURCES

Vavilov-Cherenkov effect, Doppler effect in a medium, transition radiation and associated phenomena

by V. L. GINZBURG (MOSCOW, RUSSIA)

§1.	INTRODUCTION	269
§ 2.	VAVILOV-CHERENKOV EFFECT FOR A CHARGE	271
§ 3.	QUANTUM THEORY OF THE VAVILOV-CHERENKOV EFFECT	277
§4.	VAVILOV-CHERENKOV RADIATION IN THE CASE OF MOTION IN CHANNELS AND GAPS	279
§ 5.	VAVILOV-CHERENKOV RADIATION FOR ELECTRIC, MAGNETIC AND TOROIDAL	
	DIPOLES	281
§6.	CLASSICAL AND QUANTUM THEORIES OF THE DOPPLER EFFECT IN A MEDIUM	288
§ 7.	ACCELERATION RADIATION	292
§ 8.	TRANSITION RADIATION AT THE BOUNDARY BETWEEN TWO MEDIA	294
§9.	TRANSITION RADIATION AS A MORE GENERAL PHENOMENON. FORMATION ZONE	299
§ 10.	TRANSITION SCATTERING. TRANSITION BREMSSTRAHLUNG	303
§11.	TRANSITION RADIATION, TRANSITION SCATTERING AND TRANSITION	
	BREMSSTRAHLUNG IN A PLASMA	306
§ 12.	Concluding Remarks	309
REFE	RENCES	311

VI. NONLINEAR OPTICAL PROCESSES IN ATOMS AND IN WEAKLY RELATIVISTIC PLASMAS

by G. MAINFRAY AND C. MANUS (GIF SUR YVETTE, FRANCE)

§1.	INTRODUCTION	315
§ 2.	LASER LIGHT POLARIZATION EFFECTS	316
§ 3.	RESONANCE EFFECTS	317
§4.	LASER TEMPORAL-COHERENCE EFFECTS IN NONRESONANT MULTIPHOTON IONIZATION	
	ог Атомз	321
	4.1. General discussion	321
	4.2. Comparison with experiments	325
	4.2.1. The two-mode case	326
	4.2.2. The multimode case	328
§ 5.	LASER TEMPORAL-COHERENCE EFFECTS IN RESONANT MULTIPHOTON IONIZATION OF	
0	Атомя	332
§6.	Relativistic Self-Focusing of a Laser Pulse in a Plasma	335
Ū	6.1. Recent possibility of observing new physical effects	335
	6.2. Self-trapping of a long laser pulse in a plasma in equilibrium with the laser	
	field	336
	6.3. Self-focusing and self-trapping of ultra-short laser pulses	342
	6.3.1. Self-focusing due to relativistic effects	342
	6.3.2. Relativistic and ponderomotive effects in self-focusing	345
	6.3.3. Potential representation	348
	6.3.4. Recent developments	351
	6.4. General discussion and conclusions	355
REF	BRENCES	358
	HOR INDEX	363
	JECT INDEX	373
CUM	iulative Index	377