I. SOME NEW OPTICAL DESIGNS FOR ULTRA-VIOLET BIDIMENSIONAL DETECTION OF ASTRONOMICAL OBJECTS

by G. Courtès, P. Cruvellier, M. Detaille and M. Saïsse (Marseille, France)

1.	INTRODUCTION	3
	1.1 Spectral analysis of the sources	3
	1.2 Bidimensional information	4
	1.3 First approaches to bidimensional information	4
	1.4 Direct images of the sky in UV radiation	5
2.	. UV PHOTOGRAPHIC SURVEYS USING WIDE FIELD CAMERAS	6
	2.1 Early wide field cameras	6
	2.2 The very wide field camera (1 ES 022 in Spacelab-1)	7
	2.2.1 Scientific program	7
	2.2.2 The detector performance	9
	2.2.3 Compromises to accomplish the scientific program	10
	2.2.4 Geometrical conception of the camera	10
	2.2.5 Photometric properties of the imagery mode of the VWFC	11
	2.2.6 Main characteristics of the VWFC	12
	2.3 The nebular spectrograph (NS) of the VWFC	16
	2.3.1 Scientific objectives	16
	2.3.2 Limitation of the spectral range	17
	2.3.3 Optical design	17
3.	. Average Field Telescopes	19
	3.1 Early telescopes	19
	3.2 The FAUST telescope on board Spacelab-1 (1 NS 05)	22
	3.3 Three-mirror anastigmat 40 cm diameter telescope solution (TMA-1000) .	25
	3.4 Geneva-Marseille UV balloon program	28
	3.4.1 Balloon experiment	30
	3.4.2 The SCAP telescope	31
	3.4.3 The siderostat	33
	3.4.4 Optical design of FOCA-1000: astronomical telescope for balloon	
	observations	37
4.	. UV Space Telescopes of the Future	39
	4.1 Introduction	39
	4.2 The space Schmidt telescope (SST)	43
	4.2.1 Description of the optical design	43
	4.3 The space telescope (ST)	47
	4.3.1 The Wide Field and Planetary Camera (WF/PC) of the ST: The	
	radial-bay instrument	48
	4.3.2 The Faint Object Camera (FOC)	50

4.3.2.1	1 The detector	51
4.3.2.2	2 Description of the optical design	53
4.3.2.3	3 Verification of the optical performance of the FOC and its	
	coronograph mode	57
5. CONCLUSION		58
ACKNOWLEDGEMENTS	TS	59
REFERENCES		59

II. SHAPING AND ANALYSIS OF PICOSECOND LIGHT PULSES

by C. FROEHLY, B. COLOMBEAU and M. VAMPOUILLE (LIMOGES, FRANCE)

INTRODUCTION	65
1. FRAMEWORK FOR SCALAR DESCRIPTION OF OPTICAL PULSES	66
1.1 Complex analytic representation of space-time pulses	66
1.2 Sampling of optical pulses and number of their space-time modes	68
1.3 Conditions leading either to deterministic analysis or to statistical analysis of	
optical pulses	70
1.4 Three examples of optical pulses exhibiting different coherence	74
1.4.1 Deterministic temporal analysis of purely temporal pulses	74
1.4.2 Purely temporal analysis of space-time pulses	75
1.4.3 Partially coherent temporal analysis of purely temporal pulses	76
2. SPATIAL AND TEMPORAL PULSE FILTERING ON PROPAGATION AND DIFFRACTION .	77
2.1 Introduction	77
2.2 Diffraction and propagation of quasi-monochromatic pulses	78
2.2.1 Definition of quasi-monochromatic pulses	78
2.2.2 Spatial phase filtering on monochromatic pulses by free space propa-	
gation	80
2.3 Linear dispersion of quasi-single space frequency pulses	84
2.3.1 Definition of single space frequency pulses	84
2.3.2 Linear dispersion of single space frequency pulses on free space propagation	85
2.3.3 Definition of quasi-single space frequency pulses; finesse of the spatial	03
frequency spectrum of a pulse	90
2.3.4 Experiments on the dispersion of quasi-single space frequency	90
pulses	93
2.3.5 Two pulse interference: temporal Young's experiment	94
2.3.6 Temporal Fourier analysis by "far field dispersion" of single space	24
frequency pulses	96
2.4 Temporal filtering of pulses by transmission through time independent	90
optical pupils	97
2.4.1 Time impulse response of Young's slits	98
2.4.2 Time impulse response of a periodic grating	99
2.4.3 Time impulse response of other time independent apertures	100
3. TIME SHAPING OF PICOSECOND OPTICAL PULSES	100
3.1 Pulse shaping by optical filtering of time frequencies (spectral modulation)	102
3.1.1 General principles and limitations	103
3.1.2 Examples of typical shapes produced by amplitude or phase filtering	103
3.1.3 Filtering experiments	105
3.2 Pulse shaping by temporal modulation	105
	141

3.2.1	Pulse shortening by self-amplitude modulation in saturable absorb-
	ers
3.2.2	Frequency modulation by self-induced refractive index variation of
	transparent materials
	ng by a combination of temporal and spectral modulations
	Self-phase modulation of pulses after temporal shaping of their intensity
3.3.2	Combination of linear dispersion and self-phase modulation of Gaus-
	sian pulses: compression and other pulse distortions
3.3.3	A few other examples of combined modulation and filtering 133
4. OPTICAL A	NALYSIS OF PICOSECOND LIGHT PULSES
4.1 Introd	uction
4.2 Measu	rements of pulse intensity profiles
	ent optical analysis of the temporal structure of picosecond pulses 137
	Measurements of the number of temporal modes (samples) of a pulse
4.3.2	Measurements of phase (frequency) modulation by pulse compres-
	sion
4.3.3	Measurements of "instantaneous frequencies"
4.3.4	Temporal phase measurements by optical beating
4.3.5	Coherent pulse imaging by amplitude correlations or spectral
	analysis
ACKNOWLEDO	ементя

III. MULTI-PHOTON SCATTERING MOLECULAR SPECTROSCOPY

by S. Kielich (Poznań, Poland)

1. HISTORICAL DEVELOPMENTS AND OUTLINE OF THE PRESENT REVIEW	157
1.1 The definition of spontaneous multi-photon scattering	157
1.2 Spontaneous hyper-Rayleigh light scattering studies	161
1.3 Spontaneous hyper-Raman scattering studies	163
1.4 The purpose of this paper	165
2. NONLINEAR MOLECULAR RAMAN POLARIZABILITIES	166
2.1 The multipole interaction Hamiltonian	167
2.2 The equation of motion for the vector of state	169
2.3 Nonlinear polarizabilities in the electric-dipole approximation	172
2.4 Multipole electric and magnetic polarizabilities	175
3. INCOHERENT AND NONRESONANT MULTI-PHOTON SCATTERING BY FREE	
Molecules	178
3.1 The electric and magnetic fields of the scattered wave	178
3.2 Harmonic electric-dipole elastic scattering processes	179
3.3 Multi-photon vibrational Raman scattering (classical approach)	182
3.4 Rotational, vibrational and rotational-vibrational multi-photon scattering	
processes (semi-classical approach)	183
3.4.1 Three-photon Raman scattering	187
3.4.2 Four-photon scattering	
4. LINEWIDTH BROADENING IN QUASI-ELASTIC MULTI-PHOTON SCATTERING BY	
Correlated Molecules	201
4.1 The electric field and correlation tensor of scattered light	201

4.2 Linear scattering	204
4.2.1 Isotropic incoherent and coherent scattering	205
4.2.2 Anisotropic incoherent and coherent scattering	207
4.3 Three-photon scattering	210
4.4 Four-photon scattering	215
5. COOPERATIVE THREE-PHOTON SCATTERING	216
5.1 Fluctuational variations of the nonlinear molecular polarizabilities	216
5.2 The time-correlation function for interacting atoms and centrosymmetric	
molecules	219
5.2.1 Many-body atomic multipole interaction	220
5.2.2 Molecules with centre of inversion destroyed by the field of electric	
multipoles	222
6. RAMAN LINE BROADENING IN MULTI-PHOTON SCATTERING (CLASSICAL TREAT-	
MENT)	226
6.1 Three-photon Raman scattering	230
6.2 Four-photon Raman scattering	232
7. ANGULAR DISTRIBUTION AND POLARIZATION STATES OF MULTI-PHOTON SCAT-	
TERED LIGHT	233
7.1 The scattering tensors in terms of Stokes parameters	233
7.2 Natural incident light	236
7.3 Linearly polarized incident light	238
7.4 Circularly polarized incident light	239
7.5 Four-photon light scattering	241
7.6 Reciprocity relations	244
8. CONCLUDING REMARKS, AND OUTLOOK	246
Acknowledgements	249
APPENDIX A. IRREDUCIBLE CARTESIAN TENSORS	250
APPENDIX B. ISOTROPIC AVERAGING OF CARTESIAN TENSORS	251
References	254

IV. COLOUR HOLOGRAPHY

by P. Hariharan (Sydney, Australia)

1. INTRODUCTION								265
1.1 Basic principles								265
1.2 The cross-talk problem								266
2. EARLY TECHNIQUES FOR COLOUR HOLOGRAPH	Y.							268
2.1 Thin holograms								268
2.1.1 Frequency multiplexing								268
2.1.2 Spatial multiplexing								269
2.1.3 Coded reference beams								271
2.1.4 Division of the aperture field								272
2.1.5 Separation of spectra in image holog								274
2.2 Volume holograms								275
2.2.1 Volume transmission holograms						÷		276
2.2.2 Volume reflection holograms								278
2.3 Problems with early techniques								279
2.3.1 Diffraction efficiency								279
2.3.2 Emulsion shrinkage								279
2.3.3 Colour rendering								280

XVI

Х	V	Π

	000
3. Multicolour Rainbow Holograms	283
3.1 The rainbow hologram	284
3.2 Multicolour images with rainbow holograms	285
3.3 One-step multicolour rainbow holograms	288
3.4 Image blur	290
3.4.1 Wavelength spread	290
3.4.2 Source size	291
3.4.3 Diffraction	292
3.5 Recording materials	292
3.5.1 The sandwich technique	292
3.5.2 Gain in image luminance with the sandwich technique	294
4. VOLUME REFLECTION HOLOGRAMS: NEW TECHNIQUES	295
4.1 Alternative recording materials	296
4.2 Bleached reflection holograms	296
4.3 Sandwich technique	297
4.4 Concentration of the diffracted light	299
5. Pseudocolour Images	300
5.1 Colour coding	300
5.2 Rainbow holograms	301
5.3 Volume reflection holograms	302
6. ACHROMATIC IMAGES	303
6.1 Dispersion compensation	303
6.2 Rainbow holograms	305
7. Applications of Colour Holography	307
7.1 Storage of colour images	307
7.1.1 Systems using image holograms	308
7.1.2 Systems using spatial filtration	309
7.1.2 Systems using rainbow holograms	310
7.2 Colour holographic stereograms	312
7.2.1 White-light holographic stereograms	313
7.2.2 Achromatic holographic stereograms	316
7.3 Computer-generated colour holograms	316
7.3.1 Technique using multilayer colour film	317
7.3.2 Technique using holographic stereograms	318
	318
7.4 Holographic cinematography	318 321
8. CONCLUSIONS	321 321
ACKNOWLEDGEMENTS	321 321
References	321

V. GENERATION OF TUNABLE COHERENT VACUUM-ULTRAVIOLET RADIATION

by W. JAMROZ and B. P. STOICHEFF (TORONTO, CANADA)

1.	INTRODUCTION	327
2.	THEORY	328
	2.1 Nonlinear susceptibilities	328
	2.2 Resonant enhancement and tunability in gases	331
	2.3 Conversion efficiency	337
	2.4 Saturation effects and other limiting processes	341
	2.5 Higher order nonlinear effects	346

3.	EXPERIMENTAL RESULTS	349
	3.1 General techniques of frequency conversion	349
	3.2 Tunable generation in rare gases	353
	3.3 Tunable generation in metal vapors	361
	3.3.1 Strontium	363
	3.3.2 Magnesium	364
	3.3.3 Zinc	367
	3.3.4 Mercury	369
	3.3.5 Beryllium, calcium	371
	3.4 Tunable generation in molecular gases	372
	3.5 VUV and XUV generation by higher order processes	374
	3.6 Generation of tunable XUV radiation by anti-Stokes Raman scattering	376
4.	Conclusion	377
Rı	EFERENCES	377
A	UTHOR INDEX	381
	JBJECT INDEX	391
	UMULATIVE INDEX - VOLUMES I-XX	395

XVIII