CONTENTS

I. THEORY OF INTENSITY DEPENDENT RESONANCE LIGHT SCATTERING AND RESONANCE FLUORESCENCE

by B. R. MOLLOW (BOSTON, MASSACHUSETTS)

1. INTRODUCTION	3
1.1 Survey of early work	6
2. DESCRIPTION OF THE ELECTROMAGNETIC FIELD	12
3. SCATTERING SPECTRUM FOR A CLOSED TWO-LEVEL SYSTEM WITH RADIATIVE	
Relaxation	15
3.1 The exact quantum statistical method	15
3.1.1 Coherent field solution in the Schrödinger picture	15
3.1.2 Comparison of theory with experiment	20
3.1.3 <i>n</i> -photon incident field; the dressed atom method	21
3.1.4 Coherent field solution in the Heisenberg picture	23
3.2 Pure state analyses	25
3.3 Incident field statistics	28
4. Collisional Relaxation	31
4.1 The impact approximation	31
4.2 Collisions of nonzero duration	35
5. MULTILEVEL ATOM WITH TWO LASER-COUPLED STATES	36
5.1 The laser-coupled transition	36
5.2 Transitions involving other states	39
References	40

II. SURFACE AND SIZE EFFECTS ON THE LIGHT SCATTERING SPECTRA OF SOLIDS

by D. L. MILLS (IRVINE, CALIFORNIA) and K. R. SUBBASWAMY (LEXINGTON, KENTUCKY)

1. INTRODUCTION	47
2. LIGHT SCATTERING FROM OPAQUE MEDIA AND FILMS OF FINITE THICKNESS;	
QUALITATIVE CONSIDERATIONS	51
3. SURFACE AND GUIDED WAVE POLARITONS	64
4. LIGHT SCATTERING FROM SURFACE AND GUIDED WAVE POLARITONS	76
4.1 Derivation of the spectral differential cross section	77
4.2 Raman scattering from polaritons in thin crystals	83
4.2.1 Surface and guided wave polaritons in free-standing GaP films	85
4.2.2 Surface polaritons in a GaAs film on a sapphire substrate	94
5. SURFACE AND SIZE EFFECTS ON BRILLOUIN SCATTERING FROM ACOUSTICAL	
PHONONS AND SPIN WAVES	95

5.1 Acoustical phonons in opaque solids	95
5.2 The scattering of light from spin waves on the surface of opaque ferromagnets	
and in thin films	105
6. LIGHT SCATTERING AS A MICROSCOPIC PROBE OF THE SURFACE REGION	124
7. Concluding Remarks	134
References	135

III. LIGHT SCATTERING SPECTROSCOPY OF SURFACE ELECTROMAGNETIC WAVES IN SOLIDS

by S. Ushioda (Irvine, California)

1.	INTRODUCTION	141
2.	SURFACE POLARITONS IN DIFFERENT GEOMETRIES	144
	2.1 Single interface surface polaritons	145
	2.2 Double interface surface polaritons	148
	2.3 Guided wave polaritons (GWP)	152
3.	RAMAN SCATTERING BY SURFACE POLARITONS	155
	3.1 Basic concepts of Raman scattering	156
	3.2 Raman scattering intensity and selection rule for surface polaritons	161
	3.3 Experimental method	166
4.	EXPERIMENTAL RESULTS	171
	4.1 Single interface modes (SIM) and the selection rule	172
	4.2 Double interface modes (DIM)	180
	4.3 Guided wave polaritons (GWP)	185
5.	EFFECTS OF SURFACE ROUGHNESS	190
	5.1 Theoretical considerations	191
	5.2 Experimental results and comparison with theory	194
6.	CONCLUDING REMARKS	202
	CKNOWLEDGEMENTS	202
Aj	ppendix: DERIVATION OF THE DISPOSAL RELATION FOR SURFACE POLARITONS AND	
	GUIDED-WAVE POLARITONS IN A DOUBLE INTERFACE GEOMETRY	203
Rı	EFERENCES	208
	IV. PRINCIPLES OF OPTICAL DATA-PROCESSING	
	by H. J. Butterweck (Eindhoven, The Netherlands)	

1.	INTRODUCTION	213
2.	FIELD THEORY OF OPTICAL SYSTEMS	216
	2.1 The data-processing mode	216
	2.2 The reciprocity theorem	220
	SYSTEM-THEORETICAL APPROACH TO COHERENT OPTICAL SIGNAL PROCESSORS .	222
	3.1 Input-output relations in space and frequency domain	222
	3.2 Cascades and inverse systems	225
	PARTIALLY COHERENT ILLUMINATION	227
	4.1 Spectral treatment of partial coherence	227
	4.2 Incoherent illumination	230
	4.3 Coherent illumination	231
	BASIC SYSTEM CONSTRAINTS	232

CONTENTS

	5.1 Single constraints	232
	5.2 Conservation laws	239
	5.3 Multiple constraints	240
6.	EXAMPLES OF PHYSICAL AND ABSTRACT SYSTEMS	245
	6.1 Physical systems	245
	6.2 Abstract systems	249
	6.3 Cascades, inversions, and dualities of elementary systems	251
7.	OPERATIONAL NOTATION OF OPTICAL SYSTEMS AND BASIC CASCADE EQUIVA-	
	LENCES	252
	7.1 An operational notation	252
	7.2 Cascade equivalences	254
8.	OPERATIONAL ANALYSIS OF OPTICAL SYSTEMS	256
	8.1 Actual realizations of Fourier transformer and magnifier	256
	8.2 Fourier filtering	258
	8.3 Insertion of a modulator in front of a focus; aberration errors	259
	8.4 Some phenomena in free-space propagation	262
9.	SYSTEMS COMPOUNDED OF LENSES AND SECTIONS OF FREE SPACE (2S-SYSTEMS)	263
	9.1 Equivalent "circuits"	263
	9.2 Modulators in \mathfrak{QS} -systems	265
	9.3 Systems containing cylindrical lenses	267
10.	SHIFT-INVARIANT SYSTEMS: COHERENT VERSUS INCOHERENT ILLUMINATION	268
	10.1 Coherent illumination	268
	10.2 Incoherent illumination	270
	10.3 Low-pass filters	272
11.	RELATED TOPICS	275
	FERENCES	279

V. THE EFFECTS OF ATMOSPHERIC TURBULENCE IN OPTICAL ASTRONOMY

by F. RODDIER (NICE, FRANCE)

1.	INTRODUCTION					283
2.	STATISTICAL PROPERTIES OF ATMOSPHERIC TURBULENCE					284
	2.1 Structure of turbulence					284
	2.2 Temperature and humidity fluctuations		•			286
	2.3 Refractive index fluctuations					287
	2.4 Dependence of C_N^2 with height and time $\ldots \ldots \ldots \ldots \ldots$	•		•	•	288
3.	Statistical Properties of the Perturbed Complex Field \ldots .	•		•		291
	3.1 Output of a thin turbulence layer					292
	3.2 Multiple layers and thick layers	•	•		•	295
	3.3 Fourth order moments			•	•	296
4.	Long-Exposure Images	•		•		297
	4.1 Relation between the object and the image	•			•	298
	4.2 Expression for the optical transfer function	•	•	•	•	298
	4.3 Resolving power	•				300
	4.4 Application to Michelson's stellar interferometry	•	•	•		302
	4.5 Experimental measurements of the long-exposure transfer function					306
5.	Short-Exposure Images	•		•		309
	5.1 The image energy spectrum			•		309

	5.2 The aperture-synthesis approach	315
	5.3 The probability density functions of stellar speckles	318
6.	EXPOSURE-TIME AND NON-ISOPLANICITY EFFECTS	319
	6.1 Speckle cross-spectra	319
	6.2 Effect of non-isoplanicity	320
	6.3 The time evolution of speckles	324
	6.4 Effect of the exposure time on the image spectrum	326
7.	Optical Path Fluctuations	328
	7.1 Effect of a thin turbulent layer	328
	7.2 Multiple layers and thick layers	331
	7.3 The near-field approximation	332
	7.4 Phase fluctuations	334
	7.5 Angle-of-arrival fluctuations	334
	7.6 Image motion and blurring	337
8.	STELLAR SCINTILLATION	341
	8.1 First order statistics	341
	8.2 Second order statistics	345
9.	Applications to High Resolution Imaging	350
	9.1 Classical methods	350
	9.2 Adaptive optics	352
	9.3 Michelson interferometry	354
	9.4 Speckle interferometry	357
	9.5 Image reconstruction	360
10.	SEEING MONITORS AND SITE TESTING	360
	10.1 Seeing monitors	361
	10.2 Atmospheric soundings	365
	10.3 Discussion	366
11.	CONCLUSION	367
RE	FERENCES	368
	THOR INDEX	377
	BJECT INDEX	385
CU	MULATIVE INDEX – VOLUMES I-XIX	389