I. ON THE VALIDITY OF KIRCHHOFF'S LAW OF HEAT RADIATION FOR A BODY IN A NONEQUILIBRIUM ENVIRONMENT by H. P. BALTES (Zug, Switzerland)

1. INTRODUCTION
2. FUNDAMENTAL LAWS AND DEFINITIONS
2.1 Kirchhoff's law for a body in equilibrium environment.
2.2 Einstein's concept of radiative energy exchange
2.3 Absorptivity and emissivity ambiguously defined
3. STIMULATED EMISSION TREATED AS NEGATIVE ABSORPTION
3.1 The concept of net absorption
3.2 Kirchhoff's law for a weakly absorbing freely radiating body
3.3 The transmission of a weakly absorbing hot body – re-interpretation of an ex-
periment
3.4 Net absorption and spontaneous emission for freely radiating metals 15
4. STIMULATED EMISSION NOT CONSIDERED AS NEGATIVE ABSORPTION 17
4.1 Induced absorption and "total" emission for a freely radiating metal
4.2 The deviations from Kirchhoff's law predicted by Ashby and Shocken 18
4.3 Re-examination of the results of Ashby and Shocken
4.4 The proper thermodynamic definition of absorptivity and emissivity 21
4.4 The proper thermodynamic definition of absorptivity and emissivity 21 5. SOME EXPERIMENTAL RESULTS 22
4.4 The proper thermodynamic definition of absorptivity and emissivity 21 5. SOME EXPERIMENTAL RESULTS 22 6. CONCLUSIONS 23
4.4 The proper thermodynamic definition of absorptivity and emissivity 21 5. SOME EXPERIMENTAL RESULTS 22 6. CONCLUSIONS 23 7. ACKNOWLEDGEMENTS 24
4.4 The proper thermodynamic definition of absorptivity and emissivity 21 5. SOME EXPERIMENTAL RESULTS 22 6. CONCLUSIONS 23 7. ACKNOWLEDGEMENTS 24 REFERENCES 24

II. THE CASE FOR AND AGAINST SEMICLASSICAL RADIATION THEORY by L. MANDEL (Rochester, N.Y.)

1. Introduction	29
2. The Photoelectric Effect	30
3. Relation between Semiclassical Theories of Photodetection and Q.E.D	39
4. Spontaneous Emission of Light according to Neoclassical Theory	43
5. Resonance Fluorescence	50
6. Fluorescence Effects in Multi-Level Atoms	52
7. POLARIZATION CORRELATIONS IN AN ATOMIC CASCADE	54
8. Momentum Transfer Experiments	59

9	. Interference Experiments	51
10	. Conclusion \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ϵ	55
Rı	FERENCES	56
II	. OBJECTIVE AND SUBJECTIVE SPHERICAL ABERRATION MEASUREMENT OF THE HUMAN EYE	S
	by W. M. ROSENBLUM and J. L. CHRISTENSEN (Birmingham, Alabama)	
1.	INTRODUCTION	71
2.	THE ANATOMY OF THE OPTICAL ELEMENTS OF THE EYE	12
	2.1 Cornea	12
	2.2 Aqueous	/6
	2.3 Crystalline lens	/6
3.	THE BASIC CONCEPTS OF SPHERICAL ABERRATION	/6
1	LICTORICAL INTRODUCTION TO THE MELCHER OF THE CONTRACT A	

4.	HISTORICAL INTRODUCTION TO THE MEASUREMENT OF THE SPHERICAL ABERRATION OF THE EYE	77
5.	SUBJECTIVE ABERRATION MEASUREMENTS OF THE EYE	 79
6.	Objective Aberration Measurements of the Eye	86
7.	Conclusions	89
Rı	FERENCES	90

IV. INTERFEROMETRIC TESTING OF SMOOTH SURFACES

by G. SCHULZ and J. SCHWIDER (Berlin)

1. INTRODUCTION	95
2. Relative Testing by Comparing Two Surfaces	96
2.1 Determination of the deviation sums	99
2.2 Determination of the deviation differences	105
2.3 The use of a null lens \ldots \ldots \ldots \ldots \ldots \ldots	106
2.4 Enhancement of sensitivity	108
2.5 The measurement of interference patterns	115
3. Absolute Testing by Comparing Several Surfaces	118
3.1 Testing flats	119
3.2 Testing spherical surfaces	126
3.3 Testing aspheric surfaces	131
3.4 Solutions applying uniformly to the whole surface	134
4. Comparing a Surface with Itself	140
4.1 Shearing methods	141
4.2 Point reference methods	144
5. Comparing a Surface with a Hologram	146
5.1 Comparing with a hologram produced by interference	146
5.2 Comparing the surface with a computer-generated hologram as master	150
6. Some Systematic Sources of Error and Limits of Measurement	157
References	162
SUPPLEMENTARY NOTES ADDED IN PROOF	166

XП

V. SELF FOCUSING OF LASER BEAMS IN PLASMAS AND SEMICONDUCTORS by M. S. Sodha, A. K. Ghatak and V. K. Tripathi (New Delhi)

1.	INTRODUCTION	171
2.	PHENOMENOLOGICAL THEORY OF FIELD DEPENDENT DIELECTRIC CONSTANT	175
	2.1 Effective dielectric constant.	175
	2.2 Pondermotive force	177
	2.3 Heating of carriers by a Gaussian EM beam in slightly and fully ionized gases .	178
	2.4 Heating of carriers in parabolic and nonparabolic semiconductors	181
	2.5 Redistribution of carriers and expressions for field dependent dielectric constant	185
	2.5.1 Collisionless plasma (pondermotive mechanism)	190
	2.5.2 Strongly ionized plasma ($R \ll 1$, thermal conduction predominant).	190
	2.5.3 Slightly ionized plasma ($R \gg 1$, collisional loss predominant)	190
	2.5.4 Germanium	191
	2.5.5 n-type indium antimonide	192
	2.5.6 Indium antimonide (both types of carriers)	193
	2.6 Nonlinearity in the dielectric constant of a magnetoplasma	194
	2.6.1 Nonlinear dielectric constant of a collisionless magnetoplasma: pondermo-	
	tive mechanism	197
	2.6.2 Nonlinear dielectric constant of a collisional magnetoplasma: $R \gg 1$.	199
3	KINETIC THEORY OF FIRED DEDENDENT DIRECTRIC CONSTANT	202
5.	31 Heating and redistribution of carriers by a Gaussian EM beam in a dightly ionized	203
	nlasma and a parabolic semiconductor	202
	3.2 Nonlinearity in the dielectric constant of a magnetonlasma	205
	5.2 Nonineerity in the dielectric constant of a magnetoplasma	209
4.	STEADY STATE SELF FOCUSING OF EM BEAMS IN PLASMA	213
	4.1 Self focusing in a nonlinear isotropic medium.	213
	4.1.1 Collisionless plasma	217
	4.1.2 Collisional plasma: collisional loss	220
	4.1.3 Fully ionized plasma: conduction loss	223
	4.1.4 Parabolic semiconductors (e.g. Ge)	225
	4.1.5 Nonparabolic semiconductors (e.g. InSb)	227
	4.2 Magnetoplasma	229
	4.2.1 Collisionless magnetoplasma	232
	4.2.2 Weakly ionized magnetoplasma: collisional loss	233
	4.2.3 Strongly ionized magnetoplasma: thermal conduction loss	235
5	NONSTEADY STATE SELE FOCUSING	220
5.	51 Linear part of ourrant density	238
	5.2 Nonlinear current density, no redictribution of comism	238
	5.2 Nonlinear current density: no redistribution of carriers	239
	5.4 Nonlinear propagation: self distortion of plane waves	240
	5.5 Nonsteady self focusing	242
		240
6.	GROWTH OF INSTABILITY	249
	6.1 Growth of instability in a plane wavefront	249
	6.2 Growth of instability in a Gaussian beam	256
	6.3 Growth of a Gaussian perturbation over a plane uniform wavefront	260
7		200
7.	LAPERIMENTAL INVESTIGATIONS ON SELF FOCUSING	261
RI	EFERENCES	262

VI. APLANATISM AND ISOPLANATISM

by W. T. WELFORD (London)

1.	INTRODUCTION	269
2.	THE ABBE SINE CONDITION	271
3.	Axial Isoplanatism	273
	3.1 The Staeble–Lihotzky condition	274
	3.2 Conrady's theorem	275
	3.3 Linear coma as an optical path aberration	277
	3.4 Linear coma as ray aberration or wavefront aberration	277
	3.5 Some different definitions of axial isoplanatism	279
	3.6 Isoplanatism at varying magnification	282
4.	Isoplanatism with no Axis of Symmetry	283
	4.1 The Smith optical cosine law	284
	4.2 The most general isoplanatism theorem	285
	4.3 Off-axis isoplanatism in a symmetrical optical system	287
5.	Isoplanatism in Holography	289
Re	FERENCES	291
Aı	DDENDUM	292
A١	UTHOR INDEX	293
st	JBJECT INDEX	299
CU	UMULATIVE INDEX – VOLUMES I–XIII	304