CONTENTS

I. GAS LASERS AND THEIR APPLICATION TO PRECISE LENGTH MEASUREMENTS

by Arnold L. Bloom (Mountain View and Stanford, California)

1.	Introduction	3
2.	RELATED TOPICS	4
	2.2 Multi-mode operation	4
3.	Power Output Versus Frequency	6
	3.1 The gain profile	7
		11 15
4.		17
		18 22
		$\frac{24}{24}$
Б.		29
		29
	II. PICOSECOND LASER PULSES by A. J. Demaria (East Hartford, Connecticut)	
1.	Introduction	33
2.	Basic Q-Switching Principles	35
3.	GENERATION OF PICOSECOND LASER PULSES	37
	3.1 Activé mode-locking	40
		43
	The property of the property o	49 58
4.		57
		57
	4.2 Linear optical pulse-width measurement techniques	58
	4.3 Nonlinear optical pulse-width measurement techniques	61
R	EFERENCES	70

XII CONTENTS

III. OPTICAL PROPAGATION THROUGH THE TURBULENT ATMOSPHERE

by John W. Strohbehn (Hanover, N.H.)

1.	Introduction	75
2.	Turbulence in the Atmosphere	77
3.	SPECTRA FOR AMPLITUDE AND PHASE FLUCTUATIONS	82 83 85
4.	Comparison between Theory and Experiment	92
5.	RENORMALIZATION METHODS	100
6.	EXTENSIONS OF THE PLANE WAVE RESULTS	104 104 106 111 112 114
7.	Applications	116
R	EFERENCES	119
Ι	V. SYNTHESIS OF OPTICAL BIREFRINGENT NETWO	RKS
1.	INTRODUCTION. 1.1 General	125 125 128 129 134
	1.1 General	$125 \\ 128 \\ 129$
2.	1.1 General	125 128 129 134 136 137 146 149 157
2.	1.1 General . 1.2 Lyot and Solc filters . 1.3 Understanding how birefringent networks function 1.4 Specifying the desired response . SYNTHESIS PROCEDURES . 2.1 Procedure 1 (single-pass) . 2.2 Procedure 2 (single-pass) . 2.3 Procedure 3 (single-pass) . 2.4 Procedures 4A and 4B (double-pass) . 2.5 Procedures 5A and 5B (double-pass) . 2.5 Procedures 5A and 5B (double-pass) . EXPERIMENTAL RESULTS . 3.1 Lyot and Solc filters . 3.2 A technique for measuring transmittance .	125 128 129 134 136 137 146 149 157 163 168 168
2.	1.1 General 1.2 Lyot and Solc filters 1.3 Understanding how birefringent networks function 1.4 Specifying the desired response SYNTHESIS PROCEDURES 2.1 Procedure 1 (single-pass) 2.2 Procedure 2 (single-pass) 2.3 Procedure 3 (single-pass) 2.4 Procedures 4A and 4B (double-pass) 2.5 Procedures 5A and 5B (double-pass) 2.5 Procedures 5A and 5B (double-pass) EXPERIMENTAL RESULTS 3.1 Lyot and Solc filters 3.2 A technique for measuring transmittance 3.3 Synthesized birefringent networks	125 128 129 134 136 137 146 149 157 163 168 169 170
2. 3. 4. A	1.1 General 1.2 Lyot and Solc filters 1.3 Understanding how birefringent networks function 1.4 Specifying the desired response SYNTHESIS PROCEDURES 2.1 Procedure 1 (single-pass) 2.2 Procedure 2 (single-pass) 2.3 Procedure 3 (single-pass) 2.4 Procedures 4A and 4B (double-pass) 2.5 Procedures 5A and 5B (double-pass) 2.5 Procedures 5A and 5B (double-pass) 3.1 Lyot and Solc filters 3.2 A technique for measuring transmittance 3.3 Synthesized birefringent networks APPLICATION OF SYNTHESIS PROCEDURES TO ELECTRO-OPTIC NETWORKS	125 128 129 134 136 137 146 149 157 163 168 169 170
2. 3. 4. A	1.1 General 1.2 Lyot and Solc filters 1.3 Understanding how birefringent networks function 1.4 Specifying the desired response SYNTHESIS PROCEDURES 2.1 Procedure 1 (single-pass) 2.2 Procedure 2 (single-pass) 2.3 Procedure 3 (single-pass) 2.4 Procedures 4A and 4B (double-pass) 2.5 Procedures 5A and 5B (double-pass) 2.5 Procedures 5A and 5B (double-pass) 3.1 Lyot and Solc filters 3.2 A technique for measuring transmittance 3.3 Synthesized birefringent networks APPLICATION OF SYNTHESIS PROCEDURES TO ELECTRO-OPTIC NETWORKS	125 128 129 134 136 149 157 163 168 169 170 173
2. 3. 4. A A	1.1 General 1.2 Lyot and Solc filters 1.3 Understanding how birefringent networks function 1.4 Specifying the desired response SYNTHESIS PROCEDURES 2.1 Procedure 1 (single-pass) 2.2 Procedure 2 (single-pass) 2.3 Procedure 3 (single-pass) 2.4 Procedures 4A and 4B (double-pass) 2.5 Procedures 5A and 5B (double-pass) 2.5 Procedures 5A and 5B (double-pass) EXPERIMENTAL RESULTS 3.1 Lyot and Solc filters 3.2 A technique for measuring transmittance 3.3 Synthesized birefringent networks APPLICATION OF SYNTHESIS PROCEDURES TO ELECTRO-OPTIC NETWORKS CKNOWLEDGMENTS	125 128 129 134 136 137 146 149 157 163 168 169 170 170 173

CONTENTS	XIII

	V. MODE LOCKING IN GAS LASERS	
	by L. Allen and D. G. C. Jones (Brighton, England)	
1	Introduction	181
	Forced Locking	183
۵.	2.1 Introduction	183
	2.2 Experimental	184
	2.3 Theory	196
3.	Self-Locking.	$\frac{212}{212}$
	3.2 Maximum emission principle theory	. 218
	3.3 Self-consistent field theory	$\frac{221}{229}$
4		232
	Conclusions	
K	EFERENCES	233
	VI. CRYSTAL OPTICS WITH SPATIAL DISPERSION	
	by V. M. Agranovich and V. L. Ginzburg (Moscow, USSR)	
1.	Introduction	237
2.	Equations of the Electromagnetic Field, Tensors $\varepsilon_{ij}(\omega,k)$ and $\varepsilon_{\perp,ij}(\omega,k)$, Dispersion Law for Normal Waves in Crystals	241
3.	Dependence of Tensor $\varepsilon_{ij}(\omega, \pmb{k})$ on the Wave Vector \pmb{k} in the Optical Band ,	252
4.	SPATIAL DISPERSION EFFECTS IN CRYSTALS	259
	4.1 Introduction, optical anisotropy of cubic crystals	259
	4.2 New waves in the neighbourhood of absorption lines	260
	tropic crystals	271
Co	ONCLUSION	278
R	EFERENCES	279
	VII. APPLICATIONS OF OPTICAL METHODS IN THE	
	DIFFRACTION THEORY OF ELASTIC WAVES	
	by K. GNIADEK and J. PETYKIEWICZ (Poland)	
1.	Introduction	283
2.	Kirchhoff's Diffraction Theory	284
	Huygens' Principle for Elastic Media	286
	Properties of the Screen and the Problem of Edge Integrals	290
5.	THE YOUNG-RUBINOWICZ INTERPRETATION IN KIRCHHOFF'S DIFFRACTION THEORY OF ELASTIC WAVES	293
6.	TENSOR POTENTIAL OF ELASTIC WAVES	293
	Fresnel Diffraction of Elastic Waves	29
	Fraunhofer Diffraction of Elastic Waves	304
9.	Conclusion	309
	EFERENCES.	309

XIV CONTENTS

VIII. EVALUATION, DESIGN AND EXTRAPOLATION METHODS FOR OPTICAL SIGNALS, BASED ON USE OF THE PROLATE FUNCTIONS

by B. Roy Frieden (Tucson, Arizona).

CONTENTS	xv

5.1 S	ERICAL CALCULATION OF THE $\lambda_{N,n}$ AND $\Phi_{N,n}(r)$	347 348 349
6.1 E 6	Fraunhofer-Fresnel image formation	349 349 349 350
6 6 6	Analysis of laser modes	351 351 356 360 362
\ 6	Problems of optimal "concentration": of encircled energy, point amplitude variability, and error of restoration or smoothing	363 363 366 367
6	The extrapolation of image data	368 368 370 371
(Extrapolation beyond the bandwidth	375 376 378 379
	Real-time extrapolation beyond the bandwidth	380 381 382 383 383 385 388 389 391 393
6.7	Degrees of freedom in the image	393 393 394 394 394 395 398
6.8 3	Evaluation of wave-aberrations	399 399 400 400 404 405
	NOWLEDGEMENTS	405
	ENCES	406
	OR INDEX	408
SUBJE	CCT INDEX	411