I. MULTIPLE-BEAM INTERFERENCE AND NATURAL MODES IN OPEN RESONATORS

by G. KOPPELMAN (Berlin)

1.	THE CLASSICAL CONCEPT OF MULTIPLE-BEAM INTERFERENCE.			•			•	3
	1.1 The Airy distribution							3
	1.2 Observation of the interference fringes							5
	1.3 The spherical mirror interferometers							7
	1.4 Standing waves and resonance enhancement							8
	1.5 The resonance and the Airy function							10
2 .	The Concept of Natural Modes							12
	2.1 Introduction							12
	2.2 Uniform waveguides							13
	2.3 Modes in hollow cylindrical waveguides							14
	2.4 Modes in particular waveguide cross-sections							16
	2.5 Modes in guides partly filled with dielectric media							20
	2.6 Non-uniform guides							20
	2.7 Modes in open structures							21
	2.8 Corresponding modes in waveguides and resonators							24
	2.9 Analogous modes in rectangular cavities and in plane min	ror	re	sor	iat	ors	•	26
3.	THE PROPERTIES OF OPEN RESONATORS							27
	3.1 Diffraction and eigenmodes							28
	3.2 Fundamental formulae							30
	3.3 Similarity relations and the stability condition		·					31
	34 Field distributions of the modes	·	•	•	•		·	32
	3.5 Diffraction loss and resonance condition	•	•	•	•			35
	3.6 Experimental results	•	·	·	•	•••		38
	3.7 Other open resonators	•	·	•	•	•••	•	41
		·	•	·	•	• •	·	11
4.	THE RELATION BETWEEN LIGENMODES AND INTERFERENCE E	FFI	EC:	rs	·	• •	•	41
	4.1 Introduction	٠	۰.		•	• . •	•	41
	4.2 Multiple-beam interference and eigenmodes in plane	-pa	ira.	llel	n	ıırı	or	
	interferometers	•	:	·	•	• . •	•	42
	4.3 Multiple beam interference and modes in interferometer	rs 1	wit	h a	a n	airı	or	
	step or a phase object	•	•	•	•	• •	•	50
	4.4 A diffraction-based resolution limit in multiple-beam int	erf	erc	ome	etr	<i>.</i>	•	57
	$4.5 Conclusions \ldots \ldots$	•	•	•	•			62
R	EFERENCES	•		•	•		•	62

II. METHODS OF SYNTHESIS FOR DIELECTRIC MULTILAYER FILTERS

by E. DELANO and R. J. PEGIS (Rochester, N.Y.)

1	Transcorrege																										2 M
۲.	INTRODUCTION.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	٠	٠	 19

2.	BASIC THEORY	•	•	•	•	71
	2.1 Reflection and transmission at a dielectric interface	•	·	·	٠	71
	2.2 Reflection and transmission for a multilayer	•	•	·	•	10
		•	·	•	·	11
3.	SURVEY OF SPECIAL METHODS	•	٠	٠	٠	80
	3.1 Graphical methods	•	٠	٠	٠	80
	3.2 Concept of equivalent layer	٠	•	·	·	83
	3.3 Periodic multilayers	·	•	·	·	80
	3.4 Method of two effective interfaces	•	•	·	•	00
		•	·	·	·	90
4.	Approximate Methods of Synthesis	٠	٠	٠	٠	94
	4.1 Vector method \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	·	·	٠	·	94
	4.2 Fourier sampling method	·	·	·	·	98
5.	Exact Methods of Synthesis	•	•	·	•	103
	5.1 Synthesis by continued fractions	•	•	٠	•	103
	5.2 Synthesis when R/T is a perfect square	•	•	٠	·	108
	5.3 Synthesis using radical factors	٠	·	·	·	114
	5.4 Rational function synthesis	•	•	,	·	118
6.	Methods of Differential Correction	•	•		•	123
	6.1 General principles		•	•		124
	6.2 Classical matrix methods	•	•		•	125
	6.3 Design by evolution \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	•	•	·	•	125
	6.4 The orthonormal method \ldots \ldots \ldots \ldots \ldots \ldots \ldots	·	·	·	·	126
7.	Appendices					126
	A. The generation of truncated cosine series			•		126
	B. Uniqueness of denominator of \mathscr{R} in continued fraction synthesis	ι.				128
	C. Positive real functions	•				129
	D. Transmission line analogy				•	130
	E. Limiting case: inhomogeneous films	•	•	•	•	134
\mathbf{R}	EFERENCES				•	135

III. ECHOES AT OPTICAL FREQUENCIES

by I. D. ABELLA (Chicago)

1.	INTRODUCTION	1
2 .	Theory of Spin Echoes and Photon Echoes	2
	2.1 Echoes at radio-frequencies	3
	2.2 Extension to optical frequencies	5
	2.3 Time-dependent perturbation	6
	2.4 Large volumes	7
	2.5. Stimulated echoes	9
3.	EXPERIMENTAL OBSERVATIONS	0
	3.1 Source and sample temperatures	2
	3.2 Detection of echoes	4
	3.3 Relaxation time measurements	9
	3.4 Multiple echoes	3
	3.5 Magnetic field effects	4
Ac	cknowledgements	7
Rı	EFERENCES	7

IV. IMAGE FORMATION WITH PARTIALLY COHERENT LIGHT

by B. J. Thompson	(West Mountain	View, California)
-------------------	----------------	-------------------

1.	INTRODUCTION.	٠	•		•	•			•	•		•	•		•	•				•	•	•	•	•	•		•	•	17	1
----	---------------	---	---	--	---	---	--	--	---	---	--	---	---	--	---	---	--	--	--	---	---	---	---	---	---	--	---	---	----	---

2. DIFFRACTION THEORY OF IMAGE FORMATION.	$172 \\ 173 \\ 175 \\ 176 \\ 177 $
3. Concepts of the Theory of Partial Coherence	180
4. IMAGE FORMATION WITH PARTIALLY COHERENT LIGHT.	183 186 187 188 188
5. IMAGE OF A TWO-POINT OBJECT	191 192 194 197
6. IMAGE OF A SINE WAVE. 6.1 Sinusoidal amplitude transmittance. 6.2 Sinusoidal intensity transmittance	202 203 208
7. IMAGE OF AN EDGE. .	$212 \\ 213 \\ 217$
8. IMAGES OF OTHER OBJECTS	220 220 222 222 224
9. Conclusions	227
Acknowledgement	229
References	229

V. QUASI-CLASSICAL THEORY OF LASER RADIATION

by A. L. MIKAELIAN and M. L. TER-MIKAELIAN (Erevan, USSR)

1.	INTRODUCTION	233
2.	APPROXIMATE THEORY OF GENERATION AND AMPLIFICATION2.1 Derivation of equations2.2 Stationary conditions of generation2.3 Non-stationary case, averaged along the length of a generating element2.4 The amplifier of travelling wave	234 234 237 238 241
3.	QUASI-CLASSICAL EQUATIONS	244 244 248 252 258
4.	QUASI-CLASSICAL THEORY OF AMPLIFICATION.	261 261 266
5.	QUASI-CLASSICAL THEORY OF THE GENERATOR	281 281 286 288
Rı	EFERENCES	295

VI. THE PHOTOGRAPHIC IMAGE

by S. OOUE (Saitama, Japan)

1.	INTRODUCTION	301
2 .	The Optical Properties of the Photographic Image	302
	2.1 The absorption of the image	303
	2.2 Light scattering by the image	304
	2.3 Unevenness of the optical paths of the photographic layer	306
3.	The Granularity	309
	3.1 Fourier analysis of the granular pattern	310
	3.2 Measurement of the autocorrelation function and the Wiener spectrum .	312
	3.3 Various effects influencing the granularity.	318
	3.4 The relation between the granularity and the graininess	323
4.	The Optical Transfer Function	325
	4.1 Fourier analysis of the photographic system	326
	4.2 Measurement of the OTF \ldots \ldots \ldots \ldots \ldots \ldots	330
	4.3 Various effects influencing the OTF	339
	4.4 Analysis and evaluation of the OTF	348
5.	Conclusion	355
A	CKNOWLEDGEMENT	356
R	EFERENCES	356

VII. INTERACTION OF VERY INTENSE LIGHT WITH FREE ELECTRONS

by J. H. EBERLY (Rochester, N.Y.)

1. INTRODUCTION		1
1.1 Elementary considerations and co	nventions	2
1.2 Dimensional considerations		4
1.3 Speculations with longer waveleng	ths \ldots \ldots \ldots \ldots \ldots 36	7
2. Electron in a Monochromatic Ext:	RNAL FIELD	8
2.1 Non-relativistic electron orbits.		8
2.2 The classical relativistic problem		9
2.3 Quantum mechanical wave equat	ons and exact wave functions 37	2
2.4 The Green's function		6
2.5 The electron self-energy		8
3. ELECTRON REFLECTION AND REFRACT	ION	2
3.1 Effective potentials		2
3.2 Low energy electron reflection an	l refraction	5
4. PHOTON-ELECTRON SCATTERING		6
4.1 Thomson scattering and radiation	reaction effects	7
4.2 Compton scattering	38	8
4.3 Non-linear Compton wavelength	shift and observation of electron mass	-
shift		2
4.4 Production of harmonics, beats as	d electron-positron pairs	5
4.5 Kapitza-Dirac scattering, theory	and experimental results	7
5 SCATTERING FROM BOUND SYSTEMS	39	9
Appendix A Coherent states in quan	1 $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ 1	ň
APPENDIX B Feynman diagrams in i	tense-field electrodynamics 40	3
		0
ACKNOWLEDGEMENT		.0
References		.0
AUTHOR INDEX		.6
SUBJECT INDEX		23
•		