PRE	FACE	/11
CON	TENTS	IX
	I. THE ELEMENTS OF RADIATIVE TRANSFER	
	by F. Kottler (Rochester, New York)	
1.	HISTORY OF RADIATIVE TRANSFER	3
2.	INTRODUCTION	5
3.	FUNDAMENTAL CONCEPTS	7
4 .	EQUATION OF RADIATIVE TRANSFER	8
5.	FORMAL SOLUTION OF THE EQUATION OF RADIATIVE TRANSFER	10
6.	SCHWARZSCHILD-MILNE INTEGRAL EQUATION	12
7.	SCHUSTER-SCHWARZSCHILD APPROXIMATION	12
8.	APPROXIMATE COMPUTATION OF THE SOURCE FUNCTION FROM THE TWO SCHUSTER EQUATIONS	14
9.	BOUNDARY CONDITIONS FOR UNIFORMLY DIFFUSE INCIDENCE	15
10.	SECOND APPROXIMATION	15
11.	DISCUSSION	16
12.	SPECIAL CASE: COMPARISON OF THE SCHUSTER-SCHWARZSCHILD APPROXIMATION AND THE EXACT SOLUTION OF THE SCHWARZSCHILD- MILNE EQUATION	18
13.	~ RUSSIAN ANALOGY TO THE SCHUSTER-SCHWARZSCHILD APPROXIMATION	21
14.	COLLIMATED INCIDENCE	22
15.	BOUNDARY CONDITIONS FOR COLLIMATED INCIDENCE	24
16.	FORMAL INTEGRATION FOR COLLIMATED INCIDENCE	25
17.	CONCLUDING REMARKS	26
REF	ERENCES	27

II. APODISATION

by P. JACQUINOT and B. ROIZEN-DOSSIER (Bellevue (S & O) and Nancy, France)

1.	INTRODUCTION	31
2.	CLASSIFICATION OF CASES AND METHODS	33
	2.1 The different cases \ldots \ldots \ldots \ldots \ldots \ldots	33
	2.2 The diffraction pattern and the instrumental function	35
	2.3 Notation and fundamental formulae	38
	2.4 Classification of methods for determining apodising functions	48

3.	RESULT PRIORI	S FOR CERTAIN PUPIL FUNCTIONS $\mathcal{F}(x)$ OR $\mathcal{F}(r)$ CHOSEN A	49
4.	GENERA $\mathscr{T}(x)$ OF $\mathscr{A}(\rho)$	L PROPERTIES OF PUPILS WITH NON-UNIFORM TRANSMISSION R $\mathscr{F}(r)$ AND THE ASSOCIATED DIFFRACTION PATTERN $\mathscr{A}(\xi)$ OR	60
	$\begin{array}{r} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \end{array}$	Impossibility of apodising by a pupil phase plate The particular case of rectilinear pupils	$ \begin{array}{r} 60 \\ 61 \\ 61 \\ 61 \\ 61 \\ 67 \\ 69 \\ \end{array} $
5.	SYSTEM TIES .	ATIC SEARCH FOR PUPIL FUNCTIONS WITH APODISING PROPER-	72
	5.1 5.2	Introduction	72
	5.3	which have been proposed	74 81
0	5.4	Pupil functions which satisfy several conditions	90 06
6.	NUMER	ICAL RESULTS AND DISCUSSION	96
	$\substack{6.1\\6.2}$	Pupil functions of circular symmetry $T(r)$ Apodisers for pupils $T(r)$ with central obstruction in the ratio $t = d/a$	97 105
	6.3	Apodisers $T(x)$ for unidimensional pupils	108
7.	THE AL CORRES	PODISATION OF ANTENNA BEAMS. A COMPARISON WITH THE PONDING OPTICAL PROBLEM	112
	7.1 7.2 7.3	Dolph's method of apodisation An optical analogue of an apodisation by an antenna array Adaptation of the process of apodisation by a continuous pupil function to the case of an array of antennae	112 117 121
8	MISCEL		122
0.	8 1	Super-resolution	122
	8.2	Pupil functions which improve the precision of longitudinal focal setting	128
	8.3	Pupil functions which reduce the effects of aberrations on the image	129
	8.4	Pupil functions which improve the contrast transfer function of the system for a given spatial frequency	129
9.	PRODU	CTION AND APPLICATIONS OF APODISERS	129
	$9.1 \\ 9.2 \\ 9.3$	Manufacture of apodisersSome applicationsConclusion	$130 \\ 132 \\ 136$
10.	APODIS	ATION A POSTERIORI (APODISATION BY CONVOLUTION)	136
	10.1	Possibility of an a posteriori process	136
	10.2 10.3	The a posteriori operation equivalent to a given pupil operation	137
	10.4	to a given a posteriori process	138
	10.4	Possible ways of performing the convolution	142

Appendix A. Apodisation in classical spectroscopic devices		147
A.1 Definition of the object and of the instrumental function	in	
spectroscopy	•	147
A.3 Apodisation and luminosity in the case of coherent	or	149
partially coherent illumination	•	157
A.4 Conclusion	•	102
Appendix B. Apodisation in fourier transform spectroscopy $% \left({{{\left({{{A}} \right)}}} \right)$.	•	162
B.1 Recapitulation of the principle	•	163
B.2 Instrumental function for an infinitely small field st	;op	164
B.4 The effect of finite solid angle of the beam	.op	$164 \\ 167$
B.5 Apodisation by a field stop of suitable diameter	•	168
APPENDIX C. APODISATION IN THE CASE OF SISAM		171
C.1 Recapitulation of the principle of the instrument		171
C.2 The instrumental function and apodisation by a pu	pil	154
C.3 Effect of the finite angular extent of the beams	•	174
C.4 Apodisation by a field stop of suitable diameter		176
APPENDIX D. APODISATION IN THE CASE OF THE GIRARD SPECTROMET	ER	177
D.1 Principle of the Girard spectrometer		177
D.2 Apodisation by the contour of the grid		180
D.3 The effect of diffraction \ldots \ldots \ldots \ldots \ldots	•	180
D.4 Apodisation by defocussing \ldots \ldots \ldots \ldots	•	183
ACKNOWLEDGEMENT		184
REFERENCES	•	184

III. MATRIX TREATMENT OF PARTIAL COHERENCE

by Н. Само

(Rochester, New York)

1.	INTRODUCTION	189
2.	PRELIMINARY CONSIDERATIONS	190
3.	ORTHOGONAL EXPANSIONS FOR WAVE AMPLITUDE	202
4.	INTENSITY MATRIX	207
	4.1 Derivation of the intensity matrix	207
	4.2 Physical meaning of the intensity matrix elements	211
	4.3 Diagonalization of the intensity matrix	215
	4.4 Mutual intensity as a kernel	221
	4.5 Meaning of eigenvalues, eigenvectors and eigenfunctions.	225
	4.6 Partial coherence in terms of the intensity matrix	229
	4.7 The intensity matrix and the density matrix	233
	4.8 An example of a partially coherent wave field	238
	4.9 Shift matrix and spatially stationary matrix	243

хı

5.	TRANSM	IISSION MATRIX	247
	5.1 5.2 5.3 5.4 5.5	Definition of the transmission matrix and transformation of intensity matrix	$247 \\ 251 \\ 254 \\ 258 \\ 260$
6.	DETECT	YON MATRIX	263
	$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Derivation of the detection matrix \ldots \ldots \ldots Detection matrix for the mutual intensity \ldots \ldots	$\begin{array}{c} 263 \\ 271 \end{array}$
7.	PROBAE DYNAM	BILITY DISTRIBUTION OF WAVE AMPLITUDES AND THERMO- IC ENTROPY	274
	7.1	Probability distribution of wave amplitudes in terms of the	
	7.2	intensity matrix	$\begin{array}{c} 275 \\ 287 \end{array}$
8.	TWO-DI	MENSIONAL WAVE FIELD	302
9.	POLYCH	ROMATIC LIGHT	309
10.	RELATE	D SUBJECTS	314
ACKI	NOWLED	GEMENTS	316
APPI	ENDICES		317
	I. II. III. IV. V.	Derivation of the formula (4.121)	317 319 320 320 323
REFI	ERENCES		326
AUI	THOR 1	INDEX	333
SUE	BJECT I	INDEX	337