Contents

Preface		•	•			•	•	v
Chapter 1 1.1 1.2	Ideal optical images Initial assumptions Ideal image formation Properties of an ideal system	•	•		•	•	•	1 2 4
1.5		•	•	•	•	•	•	•
Chapter 2 2.1 2.2 2.3 2.4	Geometrical optics Rays and geometrical wavefronts Snell's law of refraction Fermat's principle The laws of geometrical optics		• • •					9 11 13 15
Chapter 3	Gaussian optics							
3.1 3.2	The domain of Gaussian optics Definitions; the relationship betwee	en th	e two	focal	lengtl	ns	• •	17 20
3.3	The Lagrange invariant and the tr	ansve	rse ma	gnific	cation			22
3.4	Afocal systems and star spaces	•	•		•	•	•	25
3.5 3.6	The aperture stop and the princip Field stops	al ray	•	•				27 30
3.7	Gaussian properties of a single su	rface			•	•		30
3.8	Gaussian properties of two system	ıs	·	•	•	•	•	31
3.9	Thick lenses and combinations of	thin l	enses	•	•	·	•	36
3.10	Paraxial raytracing	•	•	•	•	•	•	41
Chapter 4	Finite raytracing							
4.1	Finite rays	•	•		•	•	•	46
4.2	Snell's law for skew rays .	•	•	•	•	•	•	47
4.3	Transfer between spherical surface	es	•	•	•	•	•	48
4.4	Refraction through a spherical su	rface	•	•	·	•	•	50
4.5	Beginning and ending a raytrace	•	•	•	•	•	•	51

vii

CONTENTS

4.6 4.7 4.8	Non-spherical surfaces			53 55 57
4.9	Meridian rays by a trigonometrical method .	•	•	39
Chapter 5	Optical invariants			(1
5.1	Introduction	·	·	61
5.2	Alternative forms of the Lagrange invariant	·	·	61
5.3	The Seidel difference formulae	·	·	63
5.4	The skew invariant	·	·	60
5.5	Some applications of the skew invariant	·	·	6/
5.6	The generalized Lagrange invariant	·	·	69
Chapter 6	Monochromatic aberrations			
6.1	Introduction: definitions of aberration	•	•	73
6.2	Wavefront aberrations, transverse ray aberrations and	chara	c-	
	teristic functions	•	·	74
6.3	The effect of a shift of the centre of reference sphere	on th	ne	
	aberrations	•	٠	79
6.4	Physical significance of the wavefront aberration .	·	٠	80
6.5	Other methods of computing the wavefront aberration	•	•	82
6.6	The theory of aberration types	•	٠	86
6.7	The Seidel aberrations	•	·	89
6.8	Mixed and higher order aberrations	•	•	109
Chapter 7	Calculation of the Seidel aberrations			
7.1	Addition of aberration contributions			111
7.2	Derivation of the Seidel aberration formulae			112
7.3	Validity of the Seidel sum formulae			122
7.4	Ray aberration expressions from the Seidel sums .			124
7.5	Computation of the Seidel sums; effect of stop-shifts			129
7.6	Aspheric surfaces			133
7.7	Effect of change of conjugates on the primary aberrations	s		134
7.8	Aplanatic surfaces and other aberration-free cases .			139
Chapter 8	Finite abarration formulas			
	Introduction			1/3
8.1	The Aldis theorem for transverse ray observations	•	·	1/1
8 2	Expressions for total optical path aberration	•	·	146
8.4	A planatism and isoplanatism	•	•	152
85	Linear come and offence against the sine condition	•	•	152
8.6	Isoplanatism in non-symmetric systems	•	•	156
87	Applications of the general isoplanatism theorem of Section	on 8 f	۰. ۲	161
8.8	Ontice round a finite principal ray	511 0.0	,.	165
8.0	Astigmatism of quadrics of revolution	•	•	170
0.9	Astignation of quadrics of revolution	•	•	170
Chapter 9	Chromatic aberration			1 5 0
9.1	Introduction: historical aspects	•	•	172
9.2	Longitudinal chromatic aberration and the achromatic de	Suble	t.	173
9.3	Dispersion of optical materials	•	·	175
9.4	Chromatic aberration for finite rays: the Conrady formu	la	·	180
9.5	Expressions for the primary chromatic aberrations	·	•	182
9.6	Stop-shift effects	•	٠	186

CONTENTS

9.7	Ray aberrat	ion ex	pressi	ions f	or $C_{\mathbf{I}}$	and (C_{II}			•		186
9.8	Some examp	oles			•							187
Chapter 10	Thin lens ah	erratio	ons									·
10.1	The thin ler	s vari	ables									190
10.2	Primary abe	erratio	ns of	a thir	i lens	with	the pu	ipil at	the le	ens		192
10.3	Primary abe	erratio	ns of	a thir	lens	with	remot	e stop				196
10.4	Aberrations	of pla	ane pa	arallel	plate	s						198
10.5	Some exam	oles										199
Chanter 11	Ontical tole	rances	,									
11 1	Design aber	ration	' is and	manı	ifactu	ring 2	aberra	tions				203
11.1	Some system	ns of t	tolera	nces	ince		100114		•	•	•	203
11.2	Tolerances 1	for dif	fracti	on-lin	nited s	vsten	15	•	•	•	·	204
11.5	Resolving n	ower	and re	esolut	ion li	nits	15	•	•	•	•	209
11.5	Tolerances	for no	n-diff	ractic	n-lim	ited s	vstem	∙ s• defi	initior	n of th	ne	207
1,10	optical tra	nsfer	funct	ion			y stern	, u en				211
11.6	Formulae for	or the	ontic	al trai	nsfer f	uncti	011	•	•	•	·	215
11.7	The OTF in	the g	eome	trical	ontics	appi	oxima	tion				220
11.8 Incoherently illuminated lines and edges as test objects										221		
11.9	Optical tole	rances	and	image	asses	smen	t					221
Annendix A	Summary of	tho m	oin fo	rmulo	•		-	•	•	•	•	
	Gaussian or	uie in	am 10	imuta	C							222
Δ 2	Finite ravtr	acing	•	•	•	•	•	•	·	•	•	225
Δ 3	Primary mo	nocht	• omati	ic abe	rratio	ne	•	•	•	•	•	225
A.J	Total aberry	ations	oman		iialio	115	•	•	•	•	·	220
A 5	Chromatic :	aherra	tions	•	•	•	•	•	•	·	•	229
1.5 1 U D		100110		•	•	•	•	•	•	•	•	250
Appendix B	Symbols	•	•	•	•	·	•	•	•	•	·	232
Name Inde	x.	•										235
Subject Ind	ex.		•			•						237