CONTENTS

INTRODUCTION			1
1	PRE	LIMINARIES	8
-	1.1	Elementary principles of phase-contrast micros-	
		copy	9
	1.2	Instrumental requirements and modifications	
		for high-resolution work	18
	1.3	First experiments	24
2	ELE	CTRON OPTICS	28
	2.1	The electron wavelength, refractive index, and	
		relativity	29
	2.2	Simple lens properties	32
	2.3	The paraxial ray equation	40
	2.3	The constant-field approximation	42
	2.5	Projector lenses	44
	2.6	The objective lens	48
	2.7	Practical lens design	50
	2.8	Aberrations	56
	2.9	The pre-field	65
	2.10	Summary	66
3	WAVE OPTICS		70
	3.1	Propagation and Fresnel diffraction	72
	3.2	Lens action and the diffraction limit	75
	3.3	Wave and ray aberrations	81
	3.4	Strong- and weak-phase objects	85
	3.5	The optical bench	88
	3.6	Summary	91
4	COE	IERENCE	93
	4.1	Independent electrons and computed images	96
	4.2	Coherent and incoherent images and the damp-	
		ing envelopes	97
	4.3	The characterization of coherence	104
	4.4	Spatial coherence using hollow-cone illumina-	
		tion	108

CONTENTS

	4.5	The effect of source size on coherence	111	
	4.6	Coherence requirements in practice	113	
	4.7	Summary	118	
5	HIG	H-RESOLUTION IMAGES OF		
Ũ	PER	IODIC SPECIMENS	121	
	51	The effect of lens aberrations on simple lattice		
	2.1	fringes	122	
	5.2	The effect of beam divergence on depth of field		
		for simple fringes	128	
	5.3	Approximations for the diffracted amplitudes	130	
	5.4	Many-beam structure images	136	
	5.5	Dynamical calculations and the relationship be-		
		tween computing algorithms	143	
	5.6	Image interpretation in germanium—a case	148	
		study		
	5.7	Images of defects in crystalline solids	155	
	5.8	Experimental aspects of many-beam lattice im-		
		ages	165	
	5.9	Applications of lattice imaging	177	
	5.10	Lattice imaging in STEM	177	
	5.11	Summary	187	
6	NON-PERIODIC SPECIMENS			
0	61	Phase and amplitude contrast	193	
	6.2	Single atoms in bright field	197	
	63	The use of higher accelerating voltage	208	
	6.2 6.4	Contrast and atomic number	213	
	6.5	Dark-field methods	216	
	6.6	Inelastic scattering	220	
	6.7	Image simulation	226	
	6.8	Noise and information	230	
	6.9	Minimum exposure microscopy	234	
	6.10	Summary	238	
7	FIE	CTRON SOURCES AND THE		
'		IMINATION SYSTEM	245	
	7 1	The illumination system	245	
	7.1	Brightness and its measurement	240	
	73	Biasing and high-voltage stability	250	
	74	Hair-nin filaments	252	
	/.+	rian-pin manents	251	

x

7.5	Pointed filaments	258
7.6	Lanthanum hexaboride sources	262
7.7	Field-emission sources	262

xi

8 MEASUREMENT OF ELECTRON-OPTICAL PARAMETERS AFFECTING HIGH-RESOLUTION IMAGES

	HIG	H-RESOLUTION IMAGES	266
	8.1	Objective lens focus increments	266
	8.2	Spherical aberration constant	269
	8.3	Magnification calibration	272
	8.4	Objective lens current measurement	275
	8.5	Chromatic aberration constant	275
	8.6	Astigmatic difference	277
	8.7	Optical diffractometer measurements	278
	8.8	Transverse coherence width	284
	8.9	Electron wavelength and camera length	288
	8.10	Resolution	289
9	INST	ABILITIES	297
	9.1	Magnetic fields	297
	9.2	High-voltage instability	300
	9.3	Vibration	302
	9.4	Specimen movement	303
	9.5	Contamination and the vacuum system	306
10	EXP	ERIMENTAL METHODS	309
	10.1	Astigmatism correction	310
	10.2	Taking the picture	311
	10.3	Finding and recording lattice fringes-an ex-	~ 4 - 7
	10.4	ample	315
	10.4	Adjusting the crystal orientation using non-	
	10 5	eucentric specimen holders	326
	10.5	Focusing techniques	330
	10.6	Substrate films	333
	10.7	Photographic techniques and micrograph ex- amination	336
	10.8	Emulsions for high-resolution CTEM	341
	10.9	Ancillary instrumentation for high-resolution	
		CTEM work	342
	10.10	A checklist for high-resolution work	344

CONTENTS

APPENDIX 1 A Fortran program for finding defocus and spherical aberration constants from measured optical diffractogram ring radii	347
APPENDIX 2 Use of an absorption function to repre- sent the objective aperture effect	353
APPENDIX 3 Resolution limiting factors and their wavelength dependence	354
APPENDIX 4 What is a structure image?	362
INDEX	363

xii