CONTENTS

LIST OF PLATES	•	•	•	•	•	x
I. THE OPTICAL IMAGE .	•					1
1. Geometrical theory .				•		1
1.1 Introduction				•		1
1.2 Notation						2
1.3 The aberration function.						5
1.4 Best field surface .						9
1.5 Chromatism				•		12
1.6 Aberration functions of ana	astigmats					14
1.7 Image assessment and erro	r-balancing	g in ana	astigmat	s.		19
1.71 Introduction, 19. 1.	$72 \mathrm{Best} \mathrm{fic}$	eld sur	face, 23	. 1.73	Best	
spherical field surface, 25.	1.74 Aber	ration	balanci	ng in m	ono-	
chromats, 26. 1.75 Aberra	ition balan	cing in	presenc	e of chro	ma-	
tism, 28. 1.76 Illustrative	example, 3	31.				
2. Diffraction images	•	•	•	•	•	35
2.1 The aberration-free diffract	ion image	•	•	•	•	35
2.2 Effect of central obstructio	n.	•	•	•	•	41
2.3 Diffraction theory of aberra	ations	•	•	•	•	45
2.31 The diffraction integr	al, 45. 2.3	2 Nijb	cer's cla	ssificatio	on of	
the aberrations, $48.$ 2.321 H	Physical int	erpreta	tion of t	he classi	fica-	
tion by circle polynomials	s, 54. 2.3	3 The	diffracti	ion patt	erns	
associated with a single ab	erration, 5	5.	C			0.7
3. Images of coherent or partially	coherent	object s	surfaces	•	•	67
3.1 Relevance of the ikonal fur	netion	•	•	•	•	67
3.2 Partial coherence .		•	•	•	•	73
3.3 Calculation of γ_{12} from give	en illumine	ition de	ita .	•	•	-77
3.4 Small sources	•	•	•	•	•	81
3.5 Propagation of γ_{12} .	•	•	•	•	•	82
3.6 Coherence in the image of	a light sou	\mathbf{rce}	•	•	•	86
3.7 Transillumination in the m	icroscope	•	•	.•	•	91
3.71 Condenser aperture a	nd resolvir	ig powe	er in the	microso	cope,	
94. 3.72 Images of transill	uminated (bjects,	96. 3.7.	3 Resolu	ition	
108 3.75 Imaging of po	structure,	104. J	ureg (or	ouie obj atinga)	119	
3 76 Resolution of fine grav	tings 113	SULUCU	ures (gr	aungs),	114.	
3.8 The phase-contrast micros	one					120
	. ope	•	•	•	•	100
References	•	•	•	·	•	126
II. THE FOUCAULT TEST	•	•	•	•	•	128
1. Introduction	•	•	•	•	•	128
2. General theory of the Foucault	test.	•	٠	•	•	129
2.1 Notation and basic approx	imations			•	•	129
2.2 Analytical representation o	f the test	•	•	•	•	133
2.3 The Reduction Theorem				•	•	136

CONTRACT	c c	\mathbf{N}	т	Ε	N	т	£
----------	-----	--------------	---	---	---	---	---

						100
	2.4 Two special cases	•	•	•	·	138
	2.5 The knife-edge test with a slit source	•	•	•	•	141
3.	The true mirror under the Foucault test		•			143
4.	Foucault properties of the astigmatic circu	lar mir	ror			145
5.	Circular mirror with arbitrary errors. Spec	cial case	es .			150
0.	5.1 Small errors tested with knife-edge cer	ntrally s	sot.			150
	5.1 Effects of mension the logify adapted	101 <i>a</i> 11y e	60	•	•	154
	5.2 Effects of varying the kille-edge settin	ıg	•	•	•	104
	5.3 Two special cases	·	•	•	•	156
6.	Zonal errors under the Foucault test	•	•	•	•	162
	6.1 Introductory	•	•	•	•	162
	6.2 Effect on the knife-edge shadows of a	small c	hange in	ı figure	•	163
	6.3 Local zonal errors					165
	6.4 Interpretation of the test					168
ъ	1,					7.57.4
R	EFERENCES	•	•	•	•	174
ттт	THE SCHMIDT CAMERA					176
	THE SCHMIDT CAMERA .	•	•	·	•	170
1.	Introduction and general discussion.	•	•	•	·	170
2.	The monochromatic aberrations of the Sch	nmidt e	amera	•	•	184
3.	Corrector plate profile and colour-error	in the	e classic	al Schn	nidt	
	camera	•	•	•	•	192
4.	Aberration-balancing in Schmidt cameras	•	•	•		201
5.	The field-flattened Schmidt camera .					208
	5.1 Introductory					208
	5.2 Aberrations of the field-flattened Schr	nidt cai	nera			209
	5.3 Balancing the aberrations	mar cai		•	•	219
	5.5 Datationing the aberrations .	•	•	•	•	
	5.4 An application	•	•	•	•	220
R	EFERENCES		•			228
IV.	PLATE-DIAGRAM ANALYSIS AND I'.	IS API	PLICAT	IONS	•	229
1	. Plate-diagram analysis	•	•	•	•	229
	1.1 The plate-diagram		•	•	•	229
	1.2 The Seidel error coefficients (except	distorti	on) in t	erms of	the	
	plate diagram .					230
	1.3 Seidel distortion in terms of the plate	diagra:	m.			232
	14 Extensions	0			-	236
9	Soldel properties of the Schmidt Cassogra	in grate	•	•	•	200
2	2.1 Arabarating and anostigmations in Se	hini Syste	Carrow	· ·	•	240
	2.1 Aplanatism and anastigmatism in So	enmiat-	Cassegra	ain syste	\mathbf{ms}	241
	2.2 Astigmatism in Schmidt–Cassegrain a	planats	•	•	•	245
	2.3 Distortion in the Schmidt–Cassegrain	system	s.	•	•	246
3	. Plate-mirror systems and their applicat	ion to	astronor	nical ph	ioto-	
	graphy	•				247
	3.1 Anastigmats from two spheres and on	e plate				249
	3.2 The monocentric Schmidt-Cassegrain	camera	is .			251
	3.3 Anastigmats with convex primary and	leoneas	ve second	lary mir	ror	251
	3.4 Two-sphere anlanats			5		253
	3.5 Schmidt_Casegorain prlanate with an	horical -	mirrore	•	•	200
	o.o Sommu-Cassegram aplanats with spi	norinati	mmuns	•	•	~0±

	3.6 Flat-fiel	lded a	nastigm	ats			•			257
	3.61. T	he Ba	ker cam	era typ	es, A, B ,	C, D				259
	3.7 Achrom	atized	Schmi	dt-Cass	segrain s	ystems;	two-pla	ite syste	ms	
	$\operatorname{with}\operatorname{sp}$	herica	l mirror	s.			•			263
	3.8 Schmid	t came	eras wit	h asphe	erized mi	rror	•	•		270
4.	Two-mirror	system	\mathbf{ms}		•	•	•		•	274
R	EFERENCES		•			•	•	•	•	283
INI	DEX	•		•	•		•	•		284