PREFACE TO THE FIRST EDITION	PAGE V
PREFACE TO THE SECOND EDITION	ix
HISTORICAL INTRODUCTION	xxi
I. BASIC PROPERTIES OF THE ELECTROMAGNETIC FIELD	1
1.1. The Electromagnetic Field	1
1.1.1. Maxwell's equations	1
1.1.2. Material equations	2
1.1.3. Boundary conditions at a surface of discontinuity 1.1.4. The energy law of the electromagnetic field	4 7
1.2. The Wave Equation and the Velocity of Light	10
1.3. Scalar Waves	14
1.3.1. Plane waves	14
1.3.2. Spherical waves	15
1.3.3. Harmonic waves. The phase velocity	16
1.3.4. Wave packets. The group velocity 1.4. Vector Waves	$\frac{18}{23}$
1.4. Vector waves 1.4.1. The general electromagnetic plane wave	$\frac{23}{23}$
1.4.2. The harmonic electromagnetic plane wave	$\frac{23}{24}$
(a) Elliptic polarization	$\overline{25}$
(b) Linear and circular polarization	28
(c) Characterization of the state of polarization by Stokes	20
parameters 1.4.3. Harmonic vector waves of arbitrary form	$\frac{30}{32}$
1.5. Reflection and Refraction of a Plane Wave	36
1.5.1. The laws of reflection and refraction	36
1.5.2. Fresnel formulae	38
1.5.3. The reflectivity and transmissivity; polarization on reflection and refraction	41
1.5.4. Total reflection	47
1.6. Wave Propagation in a Stratified Medium. Theory of Dielectric Films	51
1.6.1. The basic differential equations	52
1.6.2. The characteristic matrix of a stratified medium	55
(a) A homogeneous dielectric film	57
(b) A stratified medium as a pile of thin homogeneous films	58
1.6.3. The reflection and transmission coefficients 1.6.4. A homogeneous dielectric film	$\begin{array}{c} 59 \\ 61 \end{array}$
1.6.5. Periodically stratified media	66
II. ELECTROMAGNETIC POTENTIALS AND POLARIZATION	71
2.1. The Electrodynamic Potentials in the Vacuum	72
2.1.1. The vector and scalar potentials	72
2.1.2. Retarded potentials	74

9 9	Polarization and Magnetization	раде 76
	2.2.1. The potentials in terms of polarization and magnetization	76
	2.2.2. Hertz vectors	79
	2.2.3. The field of a linear electric dipole	81
2.3.	The Lorentz–Lorenz Formula and Elementary Dispersion Theory	84
	2.3.1. The dielectric and magnetic susceptibilities	84
	2.3.2. The effective field	$\frac{85}{87}$
	2.3.3. The mean polarizability: the Lorentz-Lorenz formula 2.3.4. Elementary theory of dispersion	90
2.4.	Propagation of Electromagnetic Waves Treated by Integral Equations	98
	2.4.1. The basic integral equation	99
	2.4.2. The Ewald–Oseen extinction theorem and a rigorous derivation of the Lorentz–Lorenz formula	100
	2.4.3. Refraction and reflection of a plane wave, treated with the help of the Ewald–Oseen extinction theorem	104
III. F	OUNDATIONS OF GEOMETRICAL OPTICS	109
3.1.	Approximation for Very Short Wavelengths	109
	3.1.1. Derivation of the eikonal equation	110
	3.1.2. The light rays and the intensity law of geometrical optics	$\frac{113}{117}$
	3.1.3. Propagation of the amplitude vectors3.1.4. Generalizations and the limits of validity of geometrical optics	$\frac{117}{119}$
3.2.	General Properties of Rays	121
0.21	3.2.1. The differential equation of light rays	121
	3.2.2. The laws of refraction and reflection	124
	3.2.3. Ray congruences and their focal properties	126
3.3.	Other Basic Theorems of Geometrical Optics	127
	3.3.1. Lagrange's integral invariant	127
	3.3.2. The principle of Fermat	128
	3.3.3. The theorem of Malus and Dupin and some related theorems	130
IV. G	EOMETRICAL THEORY OF OPTICAL IMAGING	133
4.1.	The Characteristic Functions of Hamilton	13 3
	4.1.1. The point characteristic	133
	4.1.2. The mixed characteristic	135
	4.1.3. The angle characteristic	137
	4.1.4. Approximate form of the angle characteristic of a refracting surface of revolution	138
	4.1.5. Approximate form of the angle characteristic of a reflecting	100
	surface of revolution	141
4.2	. Perfect Imaging	143
	4.2.1. General theorems	143
	4.2.2. Maxwell's "fish-eye"	147
	4.2.3. Stigmatic imaging of surfaces	149

xii

	CONTENTS	xiii
4.3.	 Projective Transformation (Collineation) with Axial Symmetry 4.3.1. General formulae 4.3.2. The telescopic case 4.3.3. Classification of projective transformations 4.3.4. Combination of projective transformations 	PAGE 150 151 154 154 155
4.4.	Gaussian Optics 4.4.1. Refracting surface of revolution 4.4.2. Reflecting surface of revolution 4.4.3. The thick lens 4.4.4. The thin lens 4.4.5. The general centred system	157 157 160 161 163 164
4.5.	Stigmatic Imaging with Wide-angle Pencils 4.5.1. The sine condition 4.5.2. The Herschel condition	$166 \\ 167 \\ 169$
4.6.	Astigmatic Pencils of Rays 4.6.1. Focal properties of a thin pencil 4.6.2. Refraction of a thin pencil	169 169 171
4.7.	Chromatic Aberration. Dispersion by a Prism 4.7.1. Chromatic aberration 4.7.2. Dispersion by a prism	174 174 177
4.8.	 Photometry and Apertures 4.8.1. Basic concepts of photometry 4.8.2. Stops and pupils 4.8.3. Brightness and illumination of images 	181 181 186 188
4.9.	Ray Tracing 4.9.1. Oblique meridional rays 4.9.2. Paraxial rays 4.9.3. Skew rays	190 191 193 194
4.10	 Design of Aspheric Surfaces 4.10.1. Attainment of axial stigmatism 4.10.2. Attainment of aplanatism 	197 197 200
V.G	EOMETRICAL THEORY OF ABERRATIONS	203
5.1.	Wave and Ray Aberrations; the Aberration Function	203
5.2.	The Perturbation Eikonal of Schwarzschild	207
5.3.	The Primary (Seidel) Aberrations	211
5.4.	Addition Theorem for the Primary Aberrations	218
5.5.	The Primary Aberration Coefficients of a General Centred Lens System 5.5.1. The Seidel formulae in terms of two paraxial rays 5.5.2. The Seidel formulae in terms of one paraxial ray 5.5.3. Petzval's theorem	220 220 224 225
5.6.	Example: The Primary Aberrations of a Thin Lens	226
5.7.	The Chromatic Aberration of a General Centred Lens System	230

VI. IMAGE-FORMING INSTRUMENTS	$\frac{p_{AGE}}{233}$
6.1. The Eye	233
6.2. The Camera	235
6.3. The Refracting Telescope	239
6.4. The Reflecting Telescope	245
6.5. Instruments of Illumination	250
\rightarrow (6.6) The Microscope	251
VII. ELEMENTS OF THE THEORY OF INTERFERENCE AND INTERFEROMETERS	256
7.1. Introduction	257
7.2. Interference of Two Monochromatic Waves	257
7.3. Two-beam Interference: Division of Wave-front	260
7.3.1. Young's experiment	260
7.3.2. Fresnel's mirrors and similar arrangements	261
7.3.3. Fringes with quasi-monochromatic and white light	264
7.3.4. Use of slit sources; visibility of fringes	265
7.3.5. Application to the measurement of optical path difference: the Rayleigh interferometer	268
7.3.6. Application to the measurement of angular dimensions of sources : the Michelson stellar interferometer	271
7.4. Standing Waves	277
7.5. Two-beam Interference: Division of Amplitude	281
7.5.1. Fringes with a plane parallel plate	281
7.5.2. Fringes with thin films; the Fizeau interferometer	286
7.5.3. Localization of fringes	291
7.5.4. The Michelson interferometer	300
7.5.5. The Twyman–Green and related interferometers $(7.5.6.$ Fringes with two identical plates: the Jamin interferometer	302
and interference microscopes	306
7.5.7. The Mach–Zehnder interferometer; the Bates wave-front shearing interferometer	312
7.5.8. The coherence length; the application of two-beam interference to the study of the fine structure of spectral lines	31 6
7.6. Multiple-beam Interference	323
7.6.1. Multiple-beam fringes with a plane parallel plate	323
7.6.2. The Fabry–Perot interferometer	$\frac{525}{329}$
7.6.3. The application of the Fabry–Perot interferometer to the study	010
of the fine structure of spectral lines	333
7.6.4. The application of the Fabry–Perot interferometer to the com-	
parison of wavelengths	338
7.6.5. The Lummer–Gehrcke interferometer	341
7.6.6. Interference filters	347
7.6.7. Multiple-beam fringes with thin films	351

xiv

	CONTENTS	xv
	7.6.8. Multiple-beam fringes with two plane parallel plates(a) Fringes with monochromatic and quasi-monochromatic light(b) Fringes of superposition	раде 360 360 364
7.7.	The Comparison of Wavelengths with the Standard Metre	367
VIII. E	LEMENTS OF THE THEORY OF DIFFRACTION	3 70
8.1.	Introduction	3 70
8.2.	The Huygens–Fresnel Principle	370
8.3.	Kirchhoff's Diffraction Theory	375
	8.3.1. The integral theorem of Kirchhoff	37 5
	8.3.2. Kirchhoff's diffraction theory	37 8
	8.3.3. Fraunhofer and Fresnel diffraction	3 82
8.4.	Transition to a Scalar Theory	387
	8.4.1. The image field due to a monochromatic oscillator	387
	8.4.2. The total image field	390
8.5.	Fraunhofer Diffraction at Apertures of Various Forms	392
	8.5.1. The rectangular aperture and the slit 5.5 The simular aperture	393 205
	8.5.2. The circular aperture 8.5.3. Other forms of aperture	$\frac{395}{398}$
86	Fraunhofer Diffraction in Optical Instruments	401
0.0.	8.6.1. Diffraction gratings	401
	(a) The principle of the diffraction grating	401
	(b) Types of grating	407
	(c) Grating spectrographs	412
· .	8.6.2. Resolving power of image-forming systems 8.6.3. Image formation in the microscope	414 418
	(a) Incoherent illumination	418
	(b) Coherent illumination—Abbe's theory	4 19
	(c) Coherent illumination—Zernike's phase contrast method of	101
	observation	424
8.7.	Fresnel Diffraction at a Straight Edge	428
	8.7.1. The diffraction integral	$\frac{428}{430}$
	8.7.2. Fresnel's integrals 8.7.3. Fresnel diffraction at a straight edge	430 433
8.8.	. The Three-dimensional Light Distribution near Focus	435
	8.8.1. Evaluation of the diffraction integral in terms of Lommel	200
	functions	435
	8.8.2. The distribution of intensity (a) Intensity in the geometrical focal plane	$\begin{array}{c} 439\\ 441 \end{array}$
	(a) Intensity along the axis	441
	(c) Intensity along the boundary of the geometrical shadow	441
	8.8.3. The integrated intensity	442
	8.8.4. The phase behaviour	445
8.9	. The Boundary Diffraction Wave	449

xvi	CONTENTS	
8.1	0. Gabor's Method of Imaging by Reconstructed Wave-fronts	^{PAGE} 453
	8.10.1. Producing the positive hologram	453
	8.10.2. The reconstruction	45 5
IX. 7	THE DIFFRACTION THEORY OF ABERRATIONS	459
9.1	. The Diffraction Integral in the Presence of Aberrations	46 0
	9.1.1. The diffraction integral	462
	9.1.2. The displacement theorem. Change of reference sphere9.1.3. A relation between the intensity and the average deformation of wave-fronts	462 463
9.2	2. Expansion of the Aberration Function	464
	9.2.1. The circle polynomials of Zernike	464
	9.2.2. Expansion of the aberration function	466
9.3	3. Tolerance Conditions for Primary Aberrations	468
9.4	4. The Diffraction Pattern Associated with a Single Aberration	473
	9.4.1. Primary spherical aberration	475
	9.4.2. Primary coma	477
	9.4.3. Primary astigmatism	479
9.8	5. Imaging of Extended Objects	480
	9.5.1. Coherent illumination	481
	9.5.2. Incoherent illumination	484
X.	INTERFERENCE AND DIFFRACTION WITH PARTIALLY	
	COHERENT LIGHT	491
10	0.1. Introduction	491
10	9.2. A Complex Representation of Real Polychromatic Fields	494
10	0.3. The Correlation Functions of Light Beams	499
	10.3.1. Interference of two partially coherent beams. The mutual	100
	coherence function and the complex degree of coherence	499 502
	10.3.2. Spectral representation of mutual coherence	503
10	0.4. Interference and Diffraction with Quasi-monochromatic Light	505
	10.4.1. Interference with quasi-monochromatic light. The mutual intensity	505
	10.4.2. Calculation of mutual intensity and degree of coherence for	,
	light from an extended incoherent quasi-monochromatic	70 9
	source (a) The Van Cittert–Zernike theorem	508 508
	(b) Hopkins' formula	508 512
	10.4.3. An example	513
	10.4.4. Propagation of mutual intensity	516

CONTENTS	xvii
10.5 Some Applications	page 518
10.5. Some Applications 10.5.1. The degree of coherence in the image of an extended incoherent	
quasi-monochromatic source 10.5.2. The influence of the condenser on resolution in a microscope (a) Critical illumination (b) Köhler's illumination	$518 \\ 522 \\ 522 \\ 524$
10.5.3. Imaging with partially coherent quasi-monochromatic illumi- nation	526
(a) Transmission of mutual intensity through an optical system(b) Images of transilluminated objects	$\begin{array}{c} 526 \\ 528 \end{array}$
10.6. Some Theorems Relating to Mutual Coherence	532
10.6.1. Calculation of mutual coherence for light from an incoherent source	532
10.6.2. Propagation of mutual coherence	534
10.7. Rigorous Theory of Partial Coherence	535
10.7.1. Wave equations for mutual coherence	535
10.7.2. Rigorous formulation of the propagation law for mutual coherence10.7.3. The coherence time and the effective spectral width	$537 \\ 540$
10.8. Polarization Properties of Quasi-monochromatic Light	544
10.8.1. The coherency matrix of a quasi-monochromatic plane wave	544
(a) Completely unpolarized light (Natural light)	548
(b) Completely polarized light 10.8.2. Some equivalent representations. The degree of polarization of	549
a light wave 10.8.3. The Stokes parameters of a quasi-monochromatic plane wave	$\begin{array}{c} 550 \\ 554 \end{array}$
XI. RIGOROUS DIFFRACTION THEORY	556
11.1. Introduction	556
11.2. Boundary Conditions and Surface Currents	557
11.3. Diffraction by a Plane Screen: Electromagnetic Form of Babinet's	
Principle	559
11.4. Two-dimensional Diffraction by a Plane Screen	560
11.4.1. The scalar nature of two-dimensional electromagnetic fields	560 561
11.4.2. An angular spectrum of plane waves 11.4.3. Formulation in terms of dual integral equations	$\begin{array}{c} 561 \\ 564 \end{array}$
11.5. Two-dimensional Diffraction of a Plane Wave by a Half-plane	565
11.5.1. Solution of the dual integral equations for E -polarization	565
11.5.2. Expression of the solution in terms of Fresnel integrals	567
11.5.3. The nature of the solution $11.5.4$. The solution for <i>H</i> -polarization	$570 \\ 574$
11.5.5. Some numerical calculations	575
11.5.6. Comparison with approximate theory and with experimenta results	

11.6. Three-dimensional Diffraction of a Plane Wave by a Half-plane Fass 11.7. Diffraction of a Localized Source by a Half-plane 580 11.7.1. A line-current parallel to the diffracting edge 580 11.7.2. A dipole 581 11.8. Other Problems 587 11.8.1. Two parallel half-planes 587 11.8.2. An infinite stack of parallel, staggered half-planes 589 11.8.4. Further problems 591 11.8.4. Further problems 591 11.8.4. Further problems 591 11.9. Uniqueness of Solution 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1.2. Summary of theories based on Maxwell's equations 599 12.2.3. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.4. Solution of the equations 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.4. Solution of the equations on the successive approximation	xviii	CONTENTS	
11.7.1. A line-current parallel to the diffracting edge 580 11.7.2. A dipole 584 11.8. Other Problems 587 11.8.1. Two parallel half-planes 587 11.8.2. An infinite stack of parallel, staggered half-planes 589 11.8.3. A strip 589 11.8.4. Further problems 591 11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1.1. Qualitative description of the phenomenon 593 12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for E-polarization 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 603 12.2.7. The Raman–Nath approximation 609 604 <td>11.6</td> <td>6. Three-dimensional Diffraction of a Plane Wave by a Half-plane</td> <td></td>	11.6	6. Three-dimensional Diffraction of a Plane Wave by a Half-plane	
11.7.2. A dipole 584 11.8. Other Problems 587 11.8.1. Two parallel half-planes 587 11.8.2. An infinite stack of parallel, staggered half-planes 589 11.8.3. A strip 589 11.8.4. Further problems 591 11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's equations 593 12.1. Qualitative description of the phenomenon 593 12.2. Summary of theories based on Maxwell's equations 596 12.2. Summary of theories based on Maxwell's equations 609 12.2.1. Integral equation for <i>E</i> -polarization 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximation 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 605 12.2.6. Some qualitative results	11.7	7. Diffraction of a Localized Source by a Half-plane	580
11.8. Other Problems 587 11.8.1. Two parallel half-planes 587 11.8.2. An infinite stack of parallel, staggered half-planes 589 11.8.4. A mithite stack of parallel, staggered half-planes 589 11.8.4. Further problems 591 11.8.4. Further problems 591 11.9. Uniqueness of Solution 593 2XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1. Qualitative description of the phenomenon 593 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for <i>E</i> -polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 603 12.2.7. The Raman-Nath approximation 609 XIII. OPTICS OF METALS 611			
11.8.1. Two parallel half-planes 587 11.8.2. An infinite stack of parallel, staggered half-planes 589 11.8.3. A strip 589 11.8.4. Further problems 591 11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1. Qualitative description of the phenomenon 593 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 600 12.2. Diffraction of the equation for E-polarization 600 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approxi- mations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface<		-	
11.8.2. An infinite stack of parallel, staggered half-planes 589 11.8.3. A strip 589 11.8.4. Further problems 591 11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1.1. Qualitative description of the phenomenon 593 12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for <i>E</i> -polarization 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the integral equation for <i>E</i> -polarization 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman-Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 6	11.8		
11.8.3. A strip 589 11.8.4. Further problems 591 11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1. Qualitative description of the phenomenon 593 12.1.1. Qualitative description of the phenomenon 593 12.2.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for <i>E</i> -polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximation 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615			
11.8.4. Further problems 591 11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1. Qualitative description of the phenomenon 593 12.1. Qualitative description of the phenomenon 593 12.1. Qualitative description of the phenomenon 593 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for <i>E</i> -polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approxi- mations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Co			
11.9. Uniqueness of Solution 591 XII. DIFFRACTION OF LIGHT BY ULTRASONIC WAVES 593 12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1.1. Qualitative description of the Phenomenon 593 12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for <i>E</i> -polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximation 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films 627			
12.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations 593 12.1.1. Qualitative description of the phenomenon 593 12.1.2. Summary of theories based on Maxwell's equations 596 12.1.2. Summary of theories based on Maxwell's equations 596 12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for E-polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Me	11.9	-	591
Theories Based on Maxwell's Differential Equations 593 12.1.1. Qualitative description of the phenomenon 593 12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for E-polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4.1. An absorbing film on a transparent substrate 632 13.5. Diffraction by a Conducting Sphere; Theory of Mie 633 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms	XII. D	IFFRACTION OF LIGHT BY ULTRASONIC WAVES	593
12.1.1. Qualitative description of the phenomenon 593 12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for E-polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4.1. An absorbing film on a transparent substrate 627 13.4.2. A transparent film on an absorbing substrate 632 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms of Debye's potentials 634 (b) Series expansions for then	12.1		502
12.1.2. Summary of theories based on Maxwell's equations 596 12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for E-polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman-Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4.1. An absorbing film on a transparent substrate 627 13.4.2. A transparent film on an absorbing substrate 632 13.5. Diffraction by a Conducting Sphere; Theory of Mie 633 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms of Debye's potentials 634 (b) Series expansions for			
12.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method 599 12.2.1. Integral equation for E-polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approxi- mations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films 627 13.4.2. A transparent film on a transparent substrate 632 13.5. Diffraction by a Conducting Sphere; Theory of Mie 633 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms of Debye's potentials 634 (b) Series expansions for the field components 639 (c			
Equation Method59912.2.1. Integral equation for E-polarization60012.2.2. The trial solution of the integral equation60112.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra60312.2.4. Solution of the equations by a method of successive approxi- mations60412.2.5. Expressions for the intensities of the first and second order lines for some special cases60712.2.6. Some qualitative results60812.2.7. The Raman–Nath approximation609XIII. OPTICS OF METALS61113.1. Wave Propagation in a Conductor61113.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials (b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and639	19.9		
12.2.1. Integral equation for E-polarization 600 12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films 627 13.4.1. An absorbing film on a transparent substrate 632 13.5. Diffraction by a Conducting Sphere; Theory of Mie 633 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms of Debye's potentials 634 (b) Series expansions for the field components 639 (c) Summary of formulae relating to the spherical harmonics and 634	14.4		599
12.2.2. The trial solution of the integral equation 601 12.2.3. Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 603 12.2.4. Solution of the equations by a method of successive approximations 604 12.2.5. Expressions for the intensities of the first and second order lines for some special cases 607 12.2.6. Some qualitative results 608 12.2.7. The Raman–Nath approximation 609 XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films 627 13.4.1. An absorbing film on a transparent substrate 632 13.5. Diffraction by a Conducting Sphere; Theory of Mie 633 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms of Debye's potentials 634 (b) Series expansions for the field components 639 (c) Summary of formulae relating to the spherical harmonics and 634		-	600
diffracted and reflected spectra60312.2.4. Solution of the equations by a method of successive approximations60412.2.5. Expressions for the intensities of the first and second order lines for some special cases60712.2.6. Some qualitative results60812.2.7. The Raman–Nath approximation609XIII. OPTICS OF METALS61113.1. Wave Propagation in a Conductor61113.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and639		12.2.2. The trial solution of the integral equation	601
mations60412.2.5. Expressions for the intensities of the first and second order lines for some special cases60712.2.6. Some qualitative results60812.2.7. The Raman–Nath approximation609XIII. OPTICS OF METALS61113.1. Wave Propagation in a Conductor61113.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and634		diffracted and reflected spectra	603
lines for some special cases60712.2.6. Some qualitative results60812.2.7. The Raman–Nath approximation609XIII. OPTICS OF METALS61113.1. Wave Propagation in a Conductor61113.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and637			604
12.2.6. Some qualitative results60812.2.7. The Raman–Nath approximation609XIII. OPTICS OF METALS61113.1. Wave Propagation in a Conductor61113.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie633(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and638		12.2.5. Expressions for the intensities of the first and second order	
12.2.7. The Raman–Nath approximation609XIII. OPTICS OF METALS61113.1. Wave Propagation in a Conductor61113.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63313.5. Diffraction by a Conducting Sphere; Theory of Mie633(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and609			
XIII. OPTICS OF METALS 611 13.1. Wave Propagation in a Conductor 611 13.2. Refraction and Reflection at a Metal Surface 615 13.3. Elementary Electron Theory of the Optical Constants of Metals 624 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films 627 13.4.1. An absorbing film on a transparent substrate 627 13.4.2. A transparent film on an absorbing substrate 632 13.5. Diffraction by a Conducting Sphere; Theory of Mie 633 13.5.1. Mathematical solution of the problem 634 (a) Representation of the field in terms of Debye's potentials 634 (b) Series expansions for the field components 639 (c) Summary of formulae relating to the spherical harmonics and 611			
 13.1. Wave Propagation in a Conductor 13.2. Refraction and Reflection at a Metal Surface 13.3. Elementary Electron Theory of the Optical Constants of Metals 13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films 13.4.1. An absorbing film on a transparent substrate 13.4.2. A transparent film on an absorbing substrate 13.5. Diffraction by a Conducting Sphere; Theory of Mie 13.5.1. Mathematical solution of the problem (a) Representation of the field in terms of Debye's potentials (b) Series expansions for the field components (c) Summary of formulae relating to the spherical harmonics and 		12.2.7. The Raman–Nath approximation	009
13.2. Refraction and Reflection at a Metal Surface61513.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie633(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and615	XIII. 0	PTICS OF METALS	611
13.3. Elementary Electron Theory of the Optical Constants of Metals62413.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and624	13.1	I. Wave Propagation in a Conductor	611
13.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and637	13.2	2. Refraction and Reflection at a Metal Surface	615
Metallic Films62713.4.1. An absorbing film on a transparent substrate62713.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and637	13.3	3. Elementary Electron Theory of the Optical Constants of Metals	624
13.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and639	13.4		627
13.4.2. A transparent film on an absorbing substrate63213.5. Diffraction by a Conducting Sphere; Theory of Mie63313.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and639		13.4.1. An absorbing film on a transparent substrate	627
13.5.1. Mathematical solution of the problem634(a) Representation of the field in terms of Debye's potentials634(b) Series expansions for the field components639(c) Summary of formulae relating to the spherical harmonics and		÷ 1	632
 (a) Representation of the field in terms of Debye's potentials (b) Series expansions for the field components (c) Summary of formulae relating to the spherical harmonics and 	13.	5. Diffraction by a Conducting Sphere; Theory of Mie	633
 (b) Series expansions for the field components 639 (c) Summary of formulae relating to the spherical harmonics and 		13.5.1. Mathematical solution of the problem	
(c) Summary of formulae relating to the spherical harmonics and			
			639
	~ .		645

CONTENTS	xix
	PAGE
13.5.2. Some consequences of Mie's formulae	647
(a) The partial waves	647
(b) Limiting cases	649 659
(c) Intensity and polarization of the scattered light 13.5.3. Total scattering and extinction	$\begin{array}{c} 652 \\ 656 \end{array}$
(a) Some general considerations	656
(b) Computational results	661
(b) computational results	001
XIV. OPTICS OF CRYSTALS	665
14.1. The Dielectric Tensor of an Anisotropic Medium	665
14.2. The Structure of a Monochromatic Plane Wave in an Anisotropic Medium	667
14.2.1. The phase velocity and the ray velocity	667 670
14.2.2. Fresnel's formulae for the propagation of light in crystals 14.2.3. Geometrical constructions for determining the velocities of	
propagation and the directions of vibration	673 679
(a) The ellipsoid of wave normals	673 676
(b) The ray ellipsoid(c) The normal surface and the ray surface	676 676
•	
14.3. Optical Properties of Uniaxial and Biaxial Crystals	678 670
14.3.1. The optical classification of crystals	678 679
14.3.2. Light propagation in uniaxial crystals 14.3.3. Light propagation in biaxial crystals	681
14.3.4. Refraction in crystals	684
(a) Double refraction	684
(b) Conical refraction	686
14.4. Measurements in Crystal Optics	690
14.4.1. The Nicol prism	6 90
14.4.2. Compensators	6 91
(a) The quarter-wave plate	691
(b) Babinet's compensator	692
(c) Soleil's compensator	694
(d) Berek's compensator	694
14.4.3. Interference with crystal plates	694
14.4.4. Interference figures from uniaxial crystal plates	698
14.4.5. Interference figures from biaxial crystal plates	701
14.4.6. Location of optic axes and determination of the principal refractive indices of a crystalline medium	702
14.5. Stress Birefringence and Form Birefringence	703
14.5.1. Stress birefringence	703
14.5.2. Form birefringence	705
14.6. Absorbing Crystals	708
14.6.1. Light propagation in an absorbing anisotropic medium	708
14.6.2. Interference figures from absorbing crystal plates	713
(a) Uniaxial crystals	714
(b) Biaxial crystals	715
14.6.3. Dichroic polarizers	716

APPENDICES	раде 719
I. The Calculus of Variations	719
1. Euler's equations as necessary conditions for an extremum	719
2. Hilbert's independence integral and the Hamilton-Jacobi equation	720
3. The field of extremals	722
4. Determination of all extremals from the solution of the Hamilton– Jacobi equation	724
5. Hamilton's canonical equations	724 725
6. The special case when the independent variable does not appear	120
explicitly in the integrand	726
7. Discontinuities	727
8. Weierstrass' and Legendre's conditions (sufficiency conditions for an extremum)	729
9. Minimum of the variational integral when one end point is constrained	•=•
to a surface	731
10. Jacobi's criterion for a minimum	732
11. Example I: Optics	732
12. Example II: Mechanics of material points	734
II. Light Optics, Electron Optics and Wave Mechanics	738
1. The Hamiltonian analogy in elementary form	738
2. The Hamiltonian analogy in variational form	740
 Wave mechanics of free electrons The application of optical principles to electron optics 	743
	745
III. Asymptotic Approximations to Integrals	747
1. The method of steepest descent	747
 The method of stationary phase Double integrals 	$\begin{array}{c} 752 \\ 753 \end{array}$
-	
IV. The Dirac Delta Function	755
V. A Mathematical Lemma used in the Rigorous Derivation of the Lorentz- Lorenz Law (§ 2.4.2)	760
VI. Propagation of Discontinuities in an Electromagnetic Field (§ 3.1.1)	763
1. Relations connecting discontinuous changes in field vectors	763
2. The field on a moving discontinuity surface	765
VII. The Circle Polynomials of Zernike (§ 9.2.1)	767
1. Some general considerations	767
2. Explicit expressions for the radial polynomials $R_n^{\pm m}(\rho)$	769
VIII. Proof of an Inequality (§ 10.7.3)	773
IX. Evaluation of Two Integrals (§ 12.2.2)	775
AUTHOR INDEX	779
SUBJECT INDEX	7 90 ·
	100

 $\mathbf{X}\mathbf{X}$