PAGE

PREFACE	PAGE V
HISTORICAL INTRODUCTION	xix
I. BASIC PROPERTIES OF THE ELECTROMAGNETIC FIELD	1
1.1. The Electromagnetic Field 1.1.1. Maxwell's equations	1 1
1.1.2. Material equations	$\overline{2}$
1.1.3. Boundary conditions at a surface of discontinuity 1.1.4. The energy law of the electromagnetic field	$\frac{3}{6}$
1.2. The Wave Equation and the Velocity of Light	10
1.3. Scalar Waves	13
1.3.1. Plane waves	14
1.3.2. Spherical waves 1.3.3 Harmonic waves. The phase velocity	15
1.3.4. Wave packets. The group velocity	18
1.4. Vector Waves	22
1.4.1. The general electromagnetic plane wave	22
1.4.2. The harmonic electromagnetic plane wave	24
(a) Elliptic polarization (b) Linear and circular polarization	24 28
(c) Characterization of the state of polarization by Stokes	20
parameters	29
1.4.3. Harmonic vector waves of arbitrary form	31
1.5. Reflection and Refraction of a Plane Wave	36
1.5.1. The laws of reflection and refraction 1.5.2. Freshel formulae	36
1.5.3. The reflectivity and transmissivity; polarization on reflection	00
and refraction	40
1.5.4. Total reflection	46
1.6. Wave Propagation in a Stratified Medium. Theory of Dielectric Films	50
1.6.1. The basic differential equations	51 54
(a) A homogeneous dielectric film	57
(b) A stratified medium as a pile of thin homogeneous films	58
1.6.3. The reflection and transmission coefficients	59 60
1.6.5. Periodically stratified media	65
II. ELECTROMAGNETIC POTENTIALS AND POLARIZATION	70
2.1. The Electrodynamic Potentials in the Vacuum	71
2.1.1. The vector and scalar potentials	71
2.1.2. Retarded potentials	73

0.0	Delevization and Magnetization	PAGE 75
Z.Z.	Polarization and Magnetization	75
	2.2.1. The potentials in terms of polarization and magnetization	75 78
	2.2.2. The field of a linear electric dipole	80
0.9	The Lorentz Lorenz Formula and Elementary Dispersion Theory	83
4.3.	2.2.1 The dielectric and magnetic susceptibilities	83
	2.3.1. The diffective field	84
	2.3.2. The mean polarizability: the Lorentz-Lorenz formula	86
	2.3.4. Elementary theory of dispersion	89
2.4.	Propagation of Electromagnetic Waves Treated by Integral Equations	97
	2.4.1. The basic integral equation	98
	2.4.2. The Ewald-Oseen extinction theorem and a rigorous derivation	
	of the Lorentz-Lorenz formula	99
	2.4.3. Refraction and reflection of a plane wave, treated with the help of the Ewald-Oseen extinction theorem	103
III. F	OUNDATIONS OF GEOMETRICAL OPTICS	108
3.1.	Approximation for Very Short Wavelengths	108
0.11	31.1. Derivation of the eikonal equation	109
	3.1.2. The light rays and the intensity law of geometrical optics	112
	3.1.3. Propagation of the amplitude vectors	116
	3.1.4. Generalizations and the limits of validity of geometrical optics	118
3.2.	General Properties of Rays	120
	3.2.1. The differential equation of light rays	120
	3.2.2. The laws of refraction and reflection	123
	3.2.3. Ray congruences and their focal properties	125
3.3.	Other Basic Theorems of Geometrical Optics	126
	3.3.1. Lagrange's integral invariant	126
	3.3.2. The principle of Fermat	127
	3.3.3. The theorem of Malus and Dupin and some related theorems	129
IV G	ECOMETRICAL THEORY OF OPTICAL IMAGING	132
11.0	The Characteristic Functions of Hamilton	192
4.1.	The Characteristic Functions of Hamilton	192
	4.1.1. The point characteristic	134
	4.1.2. The infred characteristic	136
	4.1.4. Approximate form of the angle characteristic of a refracting	
	surface of revolution	137
	4.1.5. Approximate form of the angle characteristic of a reflecting	
	surface of revolution	140
4.2	. Perfect Imaging	142
	4.2.1. General theorems	142
	4.2.2. Maxwell's "fish-eye"	146
	4.2.3. Stigmatic imaging of surfaces	148

х

CONTENTS	xi
 4.3. Projective Transformation (Collineation) with Axial Symmetry 4.3.1. General formulae 4.3.2. The telescopic case 4.3.3. Classification of projective transformations 4.3.4. Combination of projective transformations 	PAGE 149 150 153 153 154
 4.4. Gaussian Optics 4.4.1. Refracting surface of revolution 4.4.2. Reflecting surface of revolution 4.4.3. The thick lens 4.4.4. The thin lens 4.4.5. The general centred system 4.5. Stigmatic Imaging with Wide-angle Pencils 	156 156 159 160 162 163 165
 4.5.1. The sine condition 4.5.2. The Herschel condition 4.6. Astigmatic Pencils of Rays 4.6.1. Focal properties of a thin pencil 4.6.2. Refraction of a thin pencil 	166 168 168 168 168 170
 4.7. Chromatic Aberration. Dispersion by a Prism 4.7.1. Chromatic aberration 4.7.2. Dispersion by a prism 4.8. Photometry and Apertures 	173 173 176 180
 4.8.1. Basic concepts of photometry 4.8.2. Stops and pupils 4.8.3. Brightness and illumination of images 4.9. Ray Tracing 4.9.1. Oblique meridional rays 	180 185 187 189 189
 4.9.2. Paraxial rays 4.9.3. Skew rays 4.10. Design of Aspheric Surfaces 4.10.1. Attainment of axial stigmatism 4.10.2. Attainment of aplanatism 	192 193 196 196 199
V. GEOMETRICAL THEORY OF ABERRATIONS 5.1. Wave and Ray Aberrations; the Aberration Function	202 202
5.2. The Perturbation Eikonal of Schwarzschild 5.3. The Primary (Seidel) Aberrations 5.4. Addition Theorem for the Primary Aberrations	206 210 217
 5.5. The Primary Aberration Coefficients of a General Centred Lens System 5.5.1. The Seidel formulae in terms of two paraxial rays 5.5.2. The Seidel formulae in terms of one paraxial ray 5.5.3. Petzval's theorem 	219 219 223 224
5.6. Example: The Primary Aberrations of a Thin Lens 5.7. The Chromatic Aberration of a General Centred Lens System	225 229

VI. IN	AAGE-FORMING INSTRUMENTS	$\frac{page}{232}$
6.1.	The Eve	232
6.2.	The Camera	234
6.3.	The Refracting Telescope	238
6.4.	The Reflecting Telescope	244
6.5.	Instruments of Illumination	249
6.6.	The Microscope	250
VII. E	LEMENTS OF THE THEORY OF INTERFERENCE AND INTER- FEROMETERS	255
7.1.	Introduction	255
7.2.	Interference of Two Monochromatic Waves	256
7.3.	Two-beam Interference: Division of Wave-front	259
	7.3.1. Young's experiment	259
	7.3.2. Fresnel's mirrors and similar arrangements	260
	7.3.3. Fringes with quasi-monochromatic and white light	203 264
	7.3.5. Application to the measurement of optical path difference: the Rayleigh interferometer	267
	7.3.6. Application to the measurement of angular dimensions of sources : the Michelson stellar interferometer	270
7.4.	Standing Waves	276
7.5.	Two-beam Interference: Division of Amplitude	280
	7.5.1. Fringes with a plane parallel plate	280
	7.5.2. Fringes with thin films; the Fizeau interferometer	285
	7.5.3. Localization of fringes	290
	7.5.5. The Twyman-Green and related interferometers	301
	7.5.6. Fringes with two identical plates: the Jamin interferometer and interference microscopes	305
	7.5.7. The Mach-Zehnder interferometer; the Bates wave-front shearing interferometer	311
	7.5.8. The coherence length; the application of two-beam interference to the study of the fine structure of spectral lines	315
7.6.	Multiple-beam Interference	322
	7.6.1. Multiple-beam fringes with a plane parallel plate	322
	7.6.2. The Fabry-Perot interferometer	328
	7.6.3. The application of the Fabry-Perot interferometer to the study of the fine structure of spectral lines	332
	7.6.4. The application of the Fabry-Perot interferometer to the com-	227
	7.6.5. The Lummer-Gebreke interferometer	340
	7.6.6. Interference filters	346

7.6.7. Multiple-beam	fringes with thin films	350

	CONTENTS	xiii
	7.6.8. Multiple-beam fringes with two plane parallel plates(a) Fringes with monochromatic and quasi-monochromatic light(b) Fringes of superposition	раде 359 359 363
7.7.	The Comparison of Wavelengths with the Standard Metre	366
VIII. E	LEMENTS OF THE THEORY OF DIFFRACTION	369
8.1.	Introduction	369
8.2.	The Huygens-Fresnel Principle	369
8.3.	Kirchhoff's Diffraction Theory	374
	8.3.1. The integral theorem of Kirchhoff8.3.2. Kirchhoff's diffraction theory8.3.3. Fraunhofer and Fresnel diffraction	374 377 381
8.4.	Transition to a Scalar Theory	386
	8.4.1. The image field due to a monochromatic oscillator8.4.2. The total image field	386 389
8.5.	Fraunhofer Diffraction at Apertures of Various Forms	391
	8.5.1. The rectangular aperture and the slit	392
	8.5.2. The circular aperture 8.5.3. Other forms of aperture	394 397
8.6.	Fraunhofer Diffraction in Optical Instruments	400
	8.6.1. Diffraction gratings	400
	(a) The principle of the diffraction grating	400
	(b) Types of grating	406
	(c) Grating spectrographs 8.6.2. Besolving nower of image forming systems	411
	8.6.3. Image formation in the microscope	417
	(a) Incoherent illumination	417
	(b) Coherent illumination—Abbe's theory	418
	(c) Coherent illumination—Zernike's phase contrast method of observation	423
8.7.	Fresnel Diffraction at a Straight Edge	427
	8.7.1. The diffraction integral	427
	8.7.2. Fresnel's integrals	429
	8.7.3. Fresnel diffraction at a straight edge	432
8.8.	The Three-dimensional Light Distribution near Focus	434
	8.8.1. Evaluation of the diffraction integral in terms of Lommel	40.4
	functions	434
	(a) Intensity in the geometrical focal plane	44 0
	(b) Intensity along the boundary of the geometrical shadow	440
	(c) Intensity along the axis	44 0
	8.8.3. The integrated intensity	441
	8.8.4. The phase behaviour	444
8.9.	The Boundary Diffraction Wave	448

CO	Ν	т	Е	N	т	\mathbf{s}
----	---	---	---	---	---	--------------

8.10. Gabor's Method of Imaging by Reconstructed Wave-fronts8.10.1. Producing the positive hologram8.10.2. The reconstruction	раде 452 452 454
IX. THE DIFFRACTION THEORY OF ABERRATIONS	458
 9.1. The Diffraction Integral in the Presence of Aberrations 9.1.1. The diffraction integral 9.1.2. The displacement theorem. Change of reference sphere 9.1.3. A relation between the intensity and the average deformation of wave-fronts 	459 459 461 462
9.2. Expansion of the Aberration Function9.2.1. The circle polynomials of Zernike9.2.2. Expansion of the aberration function	$463 \\ 463 \\ 465$
9.3. Tolerance Conditions for Primary Aberrations	467
 9.4. The Diffraction Pattern Associated with a Single Aberration 9.4.1. Primary spherical aberration 9.4.2. Primary coma 9.4.3. Primary astigmatism 	472 474 476 478
9.5. Imaging of Extended Objects9.5.1. Coherent illumination9.5.2. Incoherent illumination	479 480 483
X. INTERFERENCE AND DIFFRACTION WITH PARTIALLY COHERENT LIGHT	490
10.1. Introduction	490
10.2. A Complex Representation of Real Polychromatic Fields	492
10.3. The Correlation Functions of Light Beams	497
10.3.1. Interference of two partially coherent beams. The mutual coherence function and the complex degree of coherence 10.3.2. Spectral representation of mutual coherence	497 500
10.4. Interference and Diffraction with Quasi-monochromatic Light	502
 10.4.1. Interference with quasi-monochromatic light. The mutual intensity 10.4.2. Calculation of mutual intensity and degree of coherence for light from an extended incoherent quasi monochromatic 	502
 inght from an extended incoherent quasi-monochromatic source (a) The Van Cittert-Zernike theorem (b) Hopkins' formula 10.4.3. An example 10.4.4. Propagation of mutual intensity 	$505 \\ 505 \\ 510 \\ 511 \\ 513$

xiv

co	N	т	Е	N	\mathbf{TS}
----	---	---	---	---	---------------

10.5 Some Applications	раде 515
10.5.1. The degree of coherence in the image of an extended incoherent	
quasi-monochromatic source	515
10.5.2. The influence of the condenser on resolution in a microscope	519
(a) Critical illumination	519
(b) Konler's illumination 10.5.3 Imaging with partially coherent quasi-monochromatic illumi-	921
nation	523
(a) Transmission of mutual intensity through an optical system	523
(b) Images of transilluminated objects	526
10.6. Some Theorems Relating to Mutual Coherence	529
10.6.1. Calculation of mutual coherence for light from an incoherent	200
source	529 521
10.6.2. Propagation of mutual concrence	201
10.7. Rigorous Theory of Partial Coherence	532
10.7.1. Wave equations for mutual coherence	532
coherence	534
10.7.3. The coherence time and the effective spectral width	537
10.8. Polarization Properties of Quasi-monochromatic Light	541
10.8.1. The coherency matrix of a quasi-monochromatic plane wave	541
(a) Natural light	545
(b) Monochromatic light	546
10.8.2. Some equivalent representations. The degree of polarization of	547
10.8.3. The Stokes parameters of a quasi-monochromatic plane wave	550
XI. RIGOROUS DIFFRACTION THEORY	553
11.1 Introduction	553
11.9 Downdow Conditions and Surface Cumonta	551
11.2. Boundary Conditions and Surface Currents	004
11.3. Diffraction by a Plane Screen: Electromagnetic Form of Babinet's	558
11.4. Two-dimensional Diffraction by a Plane Screen	557
11.4.1. The scalar nature of two-dimensional electromagnetic fields	557 558
11.4.3. Formulation in terms of dual integral equations	561
11.5 Two-dimensional Diffraction of a Plane Wave by a Half-plane	562
11.5.1 Solution of the dual integral equations for E -nolarization	562
11.5.2. Expression of the solution in terms of Fresnel integrals	564
11.5.3. The nature of the solution	567
11.5.4. The solution for H -polarization	571
11.5.5 Some numerical calculations	L
11.5.6 Companian with approximate theory and with approximantal	512

xv

xvi	CONTENTS	
11	.6. Three-dimensional Diffraction of a Plane Wave by a Half-plane	$^{ m page}575$
11	.7. Diffraction of a Localized Source by a Half-plane	577
	11.7.1. A line-current parallel to the diffracting edge	577
	11.7.2. A dipole	581
- 11	.8. Other Problems	584
	11.8.1. Two parallel half-planes	584
	11.8.2. An infinite stack of parallel, staggered half-planes	586
	11.8.3. A strip	586
	11.8.4. Further problems	588
11	.9. Uniqueness of Solution	588
XII.	DIFFRACTION OF LIGHT BY ULTRASONIC WAVES	590
12	2.1. Qualitative Description of the Phenomenon and Summary of Theories Based on Maxwell's Differential Equations	590
	12.1.1. Qualitative description of the phenomenon	590
	12.1.2. Summary of theories based on Maxwell's equations	593
12	2.2. Diffraction of Light by Ultrasonic Waves as Treated by the Integral Equation Method	596
	12.2.1 Integral equation for E -nolarization	597
	12.2.2. The trial solution of the integral equation	598
	12.2.3. Expressions for the amplitudes of the light waves in the	
	diffracted and reflected spectra	600
	12.2.4. Solution of the equations by a method of successive approxi-	601
	12.2.5. Expressions for the intensities of the first and second order	001
	lines for some special cases	604
	12.2.6. Some qualitative results	605
	12.2.7. The Raman and Nath approximation	606
XIII.	OPTICS OF METALS	608
13	3.1. Wave Propagation in a Conductor	608
13	2.2. Refraction and Reflection at a Metal Surface	612
13	3.3. Elementary Electron Theory of the Optical Constants of Metals	621
13	3.4. Wave Propagation in a Stratified Conducting Medium. Theory of Metallic Films	624
	13.4.1. An absorbing film on a transparent substrate 13.4.2. A transparent film on an absorbing substrate	$\begin{array}{c} 624 \\ 629 \end{array}$
13	3.5. Diffraction by a Conducting Sphere; Theory of Mie	630
	13.5.1. Mathematical solution of the problem	631
	(a) Representation of the field in terms of Debye's potentials	631
	(b) Series expansions for the field components	636
	(c) Summary of formulae relating to the spherical harmonics and to the evaluations	649
	to the cymatical randoms	074

CONTENTS	xvii
13.5.2. Some consequences of Mie's formulae(a) The partial waves(b) Limiting cases	раде 644 644 646
 (c) Intensity and polarization of the scattered light 13.5.3. Total scattering and extinction (a) Some general considerations (b) Computational regults 	649 653 653 658
(b) Computational results	000
XIV. OPTICS OF CRISIALS	004
14.1. The Dielectric Tensor of an Anisotropic Medium	662
14.2. The Structure of a Monochromatic Plane Wave in an Anisotropic Medium	664
14.2.1. The phase velocity and the ray velocity	664
14.2.2. Fresnel's formulae for the propagation of light in crystals 14.2.3. Geometrical constructions for determining the velocities of	667
propagation and the directions of vibrations	670
(a) The ellipsoid of wave normals	670
(b) The ray ellipsoid	673 672
(c) The normal surface and the ray surface	673
14.3. Optical Properties of Uniaxial and Biaxial Crystals	675
14.3.1. The optical classification of crystals	675 e72
14.3.2. Light propagation in unlaxial crystals	070 679
14.3.3. Light propagation in diaxial crystals	681
(a) Double refraction	681
(b) Conical refraction	683
14.4. Measurements in Crystal Optics	687
14.4.1. The Nicol prism	687
14.4.2. Compensators	688
(a) The quarter-wave plate	688
(b) Babinet's compensator	689
(c) Soleil's compensator	691
(d) Berek's compensator	691
14.4.3. Interference with crystal plates	691 605
14.4.4. Interference figures from unlaxial crystal plates	609
14.4.6 Location of ontic axes and determination of the principal	090
refractive indices of a crystalline medium	699
14.5. Stress Birefringence and Form Birefringence	700
14.5.1. Stress birefringence	700
14.5.2. Form birefringence	702
14.6. Absorbing Crystals	705
14.6.1. Light propagation in an absorbing anisotropic medium	705
14.6.2. Interference figures from absorbing crystal plates	710
(a) Uniaxial crystals	711
(b) Biaxial crystals	712
14.6.3. Dichroic polarizers	713

APPENDICES	page 716
I. The Calculus of Variations	716
 Euler's equations as necessary conditions for an extremum Hilbert's independence integral and the Hamilton-Jacobi equation The field of extremals Determine the second data and the maintenance of the Hamilton second data and t	$716 \\ 717 \\ 719$
 Determination of an extremals from the solution of the framiton- Jacobi equation Hamilton's canonical equations The special case when the independent variable does not appear explicitly in the integrand Discontinuities 	721 722 723 724
 8. Weierstrass' and Legendre's conditions (sufficiency conditions for an extremum) 9. Minimum of the variational integral when one end point is constrained 	726
to a surface 10. Jacobi's criterion for a minimum 11. Example I: Optics 12. Example II: Mechanics of material points	728 728 729 732
 II. Light Optics, Electron Optics and Wave Mechanics 1. The Hamiltonian analogy in elementary form 2. The Hamiltonian analogy in variational form 3. Wave mechanics of free electrons 4. The application of optical principles to electron optics 	735 735 737 740 742
 III. Asymptotic Approximations to Integrals 1. The method of steepest descent 2. The method of stationary phase 3. Double integrals 	744 744 749 750
IV. The Dirac Delta FunctionV. A Mathematical Lemma used in the Rigorous Derivation of the Lorentz-	752
Lorenz Law (§ $2.4.2$)	757
 VI. Propagation of Discontinuities in an Electromagnetic Field (§ 3.1.1) 1. Relations connecting discontinuous changes in field vectors 2. The field on a moving discontinuity surface 	$760 \\ 760 \\ 762$
VII. The Circle Polynomials of Zernike (§ $9.2.1$)	764
1. Some general considerations 2. Explicit expressions for the radial polynomials $R_n^{\pm m}(\rho)$	$\begin{array}{c} 764 \\ 766 \end{array}$
VIII. Proof of an Inequality (§ $10.7.3$)	770
IX. Evaluation of Two Integrals (§ 12.2.2)	772
AUTHOR INDEX	775
SUBJECT INDEX	785

xviii