Contents

Preface	xi
Acknowledgments	xiii
Notations and Definitions	xv

1 DESCRIPTION OF OPTICAL BEAMS

1.1	Diffraction by Apertures	1
1.2	Beam Guidance by Lenses	5
1.3	Continuously Guiding Media	9
1.4	Fabrication of Optical Waveguides	21
1.5	Transverse and Axial Coupling	23
1.6	Optical Resonators	25
1.7	The Mechanical Theory of Light	32
1.8	Rays in Isotropic and Anisotropic Media	35
1.9	Experiments in Dynamics	40
1.10	Wave Propagation	44
	References	48

2 GAUSSIAN BEAMS

2.1	The Wave Equation	51
2.2	The Gaussian Solution	52

vii

Contents

2.3	Beam Half-Width, Wavefront Radius of Curvature, and	
	On-Axis Phase	55
2.4	Propagation in Free Space	60
2.5	Propagation through Uniform Lenslike Media	64
2.6	Refraction of a Gaussian Beam by a Lens	65
2.7	Ray Matrices	67
2.8	Transformation of a Gaussian Beam by an Optical System	72
2.9	Media with Nonuniform Loss or Gain	73
2.10	Coupling between Gaussian Beams	74
2.11	Bent Fibers	79
2.12	Integral Transformations	81
2.13	Two-Dimensional Optical Resonators	83
2.14	Resonators with Gaussian Apertures	91
2.15	Mode Discrimination in Resonators with Rotational Symmetry	92
2.16	Hermite–Gauss Modes in Two Dimensions	96
2.17	Hermite-Gauss Modes in Three Dimensions; The Helical	
	Fiber	102
2.18	Modes in Two-Dimensional Resonators	114
2.19	Excitation of Resonators	122
2.20	Three-Dimensional Resonators; Anisotropic Resonators	136
2.21	The WKB Approximation of Gaussian Beams and Other	
	Representations	139
2.22	Gaussian Beams in Quasi-Optics	146
	References	159

3 WAVE EQUATIONS

3.1	Hyperbolic, Parabolic, and Elliptic Equations	162
3.2	The Maxwell Equations	166
3.3	The Geometrical Optics Limit	169
3.4	The Helmholtz Equation	171
3.5	The Fock Equation	173
3.6	Axial Coupling	177
3.7	Transverse Coupling	184
3.8	Bianisotropic Media	187
3.9	Reciprocity and Orthogonality	189
3.10	Equality of the Group and Energy Velocity	190
3.11	Moving Media	192
3.12	The Surface of Wave Vectors	194
3.13	Nondispersive Lossless Media	199
3.14	The Surface of Ray Vectors	200

viii

Contents

ix

3.15	Transverse Form of the Maxwell Equations	205
3.16	The Coupled Mode Equations	211
3.17	Perturbation Formulas and Variational Principles	216
	References	218

4 GEOMETRICAL OPTICS

4.1	Time-Harmonic Plane Waves in Homogeneous Stationary	
	Media	221
4.2	Time-Harmonic Plane Waves in Inhomogeneous Stationary	
	Media	226
4.3	Time-Invariant, z-Invariant Media	227
4.4	The Descartes-Snell Law of Refraction	230
4.5	The Point-Eikonal	232
4.6	The Phase Space	234
4.7	Time-Dependent Phenomena	236
4.8	Time of Flight in Graded-Index Fibers without Material	
	Dispersion	239
4.9	Time of Flight in Circularly Symmetric Fibers without	
	Material Dispersion	241
4.10	The Method of Strained Coordinates	245
4.11	Time of Flight in Circularly Symmetric Fibers with	
	Inhomogeneous Dispersion	247
4.12	Nonuniform Losses	250
4.13	Incoherent Sources	251
4.14	Acceptance of Optical Fibers	257
4.15	Evolution of the Distribution in Spatial Phase Space	265
4.16	Pulse Broadening in Multimode Optical Fibers	266
4.17	Experiments with Multimode Fibers	276
4.18	General Results in Gaussian Optics	286
4.19	General Properties of the Ray Matrix	290
4.20	Evaluation of the Point-Eikonal in the Approximation of	
	Gauss	293
4.21	Focusing and Deflection of Optical Beams by Cylindrical	
	Mirrors	295
4.22	Transformation of the Polarization	301
4.23	Aberrated Degenerate Optical Resonators	306
4.24	The WKB Approximation in Graded-Index Fibers	313
	References	323

Contents

5 PIECEWISE HOMOGENEOUS MEDIA

5.1	Stratified Media	326
5.2	Total Reflection; The Goos-Hänchen Shift	330
5.3	The Dielectric Slab	336
5.4	Periodic Layers	345
5.5	Propagation along Contacting Dielectric Tubes	350
5.6	Tapered Slabs	354
5.7	The Dielectric Rod; The Scalar Approximation	359
5.8	The Dielectric Rod; High-Order Modes	366
5.9	The Dielectric Rod; Whispering-Gallery Modes	370
5.10	The Dielectric Rod; Exact Solutions	372
5.11	Coupling between Trapped Modes; Cross Talk	381
5.12	Reduction of Cross Talk between Dielectric Slabs	384
5.13	Coupling between Round Fibers	387
5.14	Coupling to Mode Sinks	390
5.15	Bending Loss of a Reactive Surface	399
5.16	Bending Loss of a Dielectric Slab	404
5.17	Bending Loss of the Round Fiber	406
5.18	Radiation Losses due to a Wall Perturbation	411
5.19	Optical Fibers for Communication	414
	References	430

Auth	ıor	Ind	еx
Subj	ect	Ind	lex

433 438

x