Contents

CHAPTER 1 TRANSPARENT CONDUCTING COATINGS 1

		ptical Coatings for the Collection and onservation of Solar Energy, 2
	1.2 M	letal Films with High Infrared Reflectivity, 2
		/ide Band Gap Semiconductors as Heat lirrors, 4
	1.4 Ti	n Oxide, 6
	1.5 In	dium Oxide, 7
	1.6 C	admium Stannate, 11
	1.7 Ev	valuation of Transparent Conductors, 15
		ransparent Heat Mirrors and Selective bsorbers, 15
		at-Plate Collectors: Tabor's Concept of a elective Surface, 16
	1.10 G	eometrical Spectral Selective Surfaces, 19
CHAPTER 2		CATION OF SELECTIVE SURFACES OTOTHERMAL CONVERSION
		fficiency of Transparent Filters for Solar hermal Conversion, 22
		pplications of Selective Coatings in Solar hermoelectric Generators, 27
	2.3 E	fficiency of Thermoelectric Generators, 31

2.4 Tabor's Calculations, 33

22

xviii		(Contents
	2.5	The Heat Mirrors as an Alternative to the Selective Absorber, 34	
	2.6	Testing of Selective Surfaces in a Flat-Plate Collector under Load Conditions, 39	
CHAPTER 3		NSPARENT CONDUCTORS IN DTOVOLTAIC ENERGY CONVERSION	41
,	3.1	Interfacial Layer Heterojunctions, 42	
	3.2	SIS Model, 43	
	3.3	ITO-SnO ₂ -Si Solar Cells, 46	
	3.4	<i>n</i> -ITO/ <i>p</i> -CdTe Heterojunctions, 50	
	3.5	<i>n</i> -ITO/ <i>p</i> -InP Solar Cells, 50	
	3.6	ITO, SnO ₂ /GaAs Solar Cells, 51	
	3.7	CuInSe ₂ /ITO Solar Cells, 52	
	3.8	Role of Electron Affinity of Oxide Semi- conductors as Used in Solar Cells, 52	
	3.9	Degradation in Transparent Oxide Semiconductor Solar Cells, 56	
	3.10	Effect of Surface States and Surface Charge, 56	
	3.11	Future Possibilities of Oxide Semiconductor Solar Cells, 57	
CHAPTER 4		ARACTERIZATION OF SELECTIVE	58
	4.1	Absorptance and Emittance, 58	
	4.2	Reflectance, 62	
	4.3	Relationship among Reflectance, Emittance, Absorptance, and Kirchhoff's Law, 64	
	4.4	Measurement of Solar Absorptance and Thermal Emittance, 65	

- 4.4.1 Indirect Determination of Solar Absorptance and Thermal Emittance from Reflectance Data, 66
- 4.4.2 Direct Determination of Thermal **Emittance and Solar Absorptance**, 73

xviii

CHAPTER 5 BLACK SOLAR SELECTIVE SURFACES

- 5.1 Solar Selective Absorbing Surfaces, 89
- 5.2 Intrinsic Materials, 91
- 5.3 Absorber-Reflector Tandems, 93
 - 5.3.1 Black Nickel, 95
 - 5.3.2 Black Chrome, 97
 - 5.3.3 Black Copper, 103
 - 5.3.4 Black Iron, 110
 - 5.3.5 Cobalt Oxide, 113
 - 5.3.6 Tungsten Oxide, 114
- 5.4 Conversion Coatings, 115
 - 5.4.1 Copper Sulfide, 115
 - 5.4.2 Black Zinc Coatings, 116
 - 5.4.3 Colored Stainless-Steel Selective Surfaces, 119
 - 5.4.4 Alcoa 655 Selective Surface, 120
- 5.5 Pure Semiconductors, 126
 - 5.5.1 Silicon and Germanium, 126
 - 5.5.2 Lead Sulfide, 130
- 5.6 Metal Silicide and Carbide Solar Selective Surfaces, 134
- 5.7 Powdered Semiconductor-Reflector Combinations, 139
 - 5.7.1 Semiconductor Pigmented Selective Paints, 139
 - 5.7.2 Inorganic Metal Oxide Pigmented Selective Paints, 142
 - 5.7.3 Organic Black Pigmented Selective Paints, 143
 - 5.7.4 Metal Dust Pigmented Selective Paints, 145
- 5.8 Multilayer Interference Stacks, 146
- 5.9 Optical Trapping Systems, 154
- 5.10 Composite Materials Coatings, 161
 - 5.10.1 Metal-Insulator Composite Films, 162

		5.10.2 Semiconductor–Insulator Composite Films, 171	
	5.11	Dielectric Constant of Composite Selective Surfaces, 177	
	5.12	Quantum Size Effects, 179	
	5.13	Selective Surfaces for Concentrating Systems by Magnetron Sputtering, 182	
	5.14	Performance of Honeycomb Solar–Thermal Converters, 184	
CHAPTER 6	COI	NCLUSION AND RECOMMENDATIONS	191
	6.1	Transparent Conducting Coatings, 191	
	6.2	Plated Coatings, 192	
	6.3	Paint Coatings, 192	
	6.4	High-Temperature Selective Surfaces, 193	
	6.5	Magnetron Sputtering, 194	
		References	195
		Author Index	207
		Subject Index	213