CONTENTS

Preface	VII
CHAPTER I. THE SPACE-TIME CONTINUUM AND THE SEPARATION BETWEEN EVENTS	
1. Concepts	1
2. Events and particles	5
3. Space-time	6
4. The assignment of space-time coordinates	7
5. Notation	8
6. World lines and space-time diagrams	9
7. The motion of a material particle	10
8. Past, present and future	11
9. Standard clocks	14
10. The separation between events	15
11. The fundamental quadratic form	16
12. Finsler space-time and Hamiltonian methods	19
13. Space-time as a Riemannian space	22
14. Measurement of spacelike separation	24
15. The physical meaning of orthogonality	26
16. Distance between particles	29
17. Rigid rods	30
18. The world lines of free particles	32
19. The special and general theories of relativity	34
20. Rigid motions	36
CHAPTER II. INTRODUCTION TO THE SPECIAL THEORY	
1. Basis of the special theory of relativity	38
2. Finite separations	39
3. How to draw a straight line in space-time	42
4. Pairs of straight lines in space-time, parallel and skew.	44
5. The physical meaning of the special coordinates	47
6. Splitting space-time into space and time	49

7.	Galileian frames of reference	52
8.		54
9.	Minkowskian coordinates	56
Снартен	R III. SPACE-TIME DIAGRAMS	
1.	Some elements of the geometry of flat space-time	59
2.	Orthogonal projections	61
3.	Space-time diagrams	63
4.	Space-time diagram of the null cone	64
5.	M-geometry and E -geometry	65
6.	Pseudospheres	67
Снартег	R IV. THE LORENTZ TRANSFORMATION	
1.	The general Lorentz transformation	69
2.	Restrictions on Lorentz transformations	73
3.		75
4.		76
5.	•	79
6.	• •	
	placements	84
7.	<u>*</u>	86
8.		90
9.		
	orthogonal tetrads	94
10.		
	transformations of triads of null rays	98
11.	Spinors	103
12.		
	Lorentz transformation	107
13.	The simple Lorentz transformation between two frames	
	of reference	110
14.	Lorentz transformations with Hermitian (or sym-	
	metric) matrix	114
Снарте	R V. APPLICATIONS OF THE LORENTZ TRANS-FORMATION	
1.	Apparent contraction of a moving body and apparent	
	retardation of a moving clock	118
2.	Snapshots	120

XI

	3.	Space-time diagrams of contraction and retardation	122
	4.	Composition of velocities	126
	5.	The velocity 4-vector and the acceleration 4-vector.	130
	6.	Transformation of a wave motion	133
	7.	Reflection at moving mirrors	138
	8.	Fresnel's convection coefficient	142
	9.	Aberration	146
	10.	The expanding universe in special relativity	150
		The red-shift	152
	12.	Luminosity and distance	153
	13.	The dependence of red-shift on apparent distance and	
		the age of the universe	156
	14.	The Michelson-Morley experiment	158
Снаг	ንጉፑፑ	VI. MECHANICS OF A PARTICLE AND COL-	
O11111		LISION PROBLEMS	
		Force. Action and reaction. A philosophical digression	163
		Particles and mass	165
		Equations of motion	166
	4.	Is proper mass constant?	167
	5.	Interpretation of the equations of motion	168
	6.	Motion under a constant relative force and in a constant	
		magnetic field	171
		Momentum 4-vector for a photon	172
	8.	Collision and disintegration problems	173
	9.	Space-time diagrams of collisions	176
	10.	The triangle inequality in space-time	177
	11.		
,		disintegration	180
		Some numerical values	182
	13.	±	183
	14.	1	185
	15.	.	187
		The sameness of photons	189
		The emission and absorption of a photon	191
•	18.	The Compton effect	193
	19.	The annihilation and creation of matter	199
	20.	Elastic collisions	205

XII CONTENTS

Снарте	R VII. MECHANICS OF A DISCRETE SYSTEM	
1.	Discrete and continuous systems	208
2.	Impulses and continuous forces	209
3.	Internal impulses	210
4.	The conservation of 4-momentum for a system	213
5.		216
6.		218
7.		220
8.	The geometrical representation of a skew-symmetric	
	tensor	223
9.	Elastic collisions with unchanged intrinsic angular	
	momentum invariants. The case of identical material	
	particles	227
10.		
	momentum invariants unchanged	235
11.	General treatment of elastic collision with intrinsic	
	angular momentum	237
12.	Summary of procedure for solving a collision problem .	246
13.	Particular cases of collisions	248
14.	External impulses and impulsive torques acting on a	
	system	251
15.	The two-body problem	254
C	WILL MEGITANICS OF A COMMINION	
CHAPTE	R VIII. MECHANICS OF A CONTINUUM	
1.		261
2.	Fundamental laws of relative momentum and relative	
,	energy for a system	263
3.	Impact of a stream of particles on a target	265
4.	Pressure in a relativistic gas	267
5.	Pressure due to the impact of photons	269
6.	World tubes and their cross-sections	272
7.	Green's theorem and the expansion of world tubes	276
8.	The energy tensor of a continuous medium	281
9.	The physical meaning of the energy tensor	285
10.	The energy tensor for an incoherent stream of material	
	particles	288
11.	6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1	
12.	Mean density, mean velocity and stress	
13.	Equations of motion of a continuous medium	300

CONTENTS		XIII
	•	

15.	The perfect fluid in relativity	302 306 309
Снартек	IX. THE ELECTROMAGNETIC FIELD IN VACUO	•
1.	The electromagnetic tensor F_{rs}	317
2.	Lorentz transformations of the electric and magnetic	
	3-vectors	320
	The energy tensor	322
4.	Eigen values and principal directions for the electro-	
	magnetic energy tensor	325
5.	The canonical forms for an electromagnetic field at an	
	event	331
	Eigen properties of the tensors F_{rs} and F_{rs}^*	336
7.	The tensors F_{rs} and F_{rs}^* expressed in terms of invariants	
	and principal null vectors	339
8.	The 4-potential	345
	Plane electromagnetic waves	350
	Some special systems of plane waves	354
11.	r	257
10	Interference	356
	Some scalar wave functions	359
13.		262
14.		363 366
15.	Superposition of elementary wave functions	372
16.	A nearly static electromagnetic particle (β large)	374
17.	Model of a photon with $\beta = 0 \dots \dots \dots$	375
18.	Model of a photon with $\beta = 0$	379
19.	Null 3-spaces and Green's theorem	383
20.	Electromagnetic shock waves	385
20.	Zioni omagnetto chicch waves	
Снартен	X. FIELDS AND CHARGES	
1.	The discrete and continuous methods	387
2.	The Coulomb field of an electric charge	388
3.	The field of an accelerated charge	391
4.	The ponderomotive force	394
5.	The electromagnetic Kepler problem	396

XIV CONTENTS

6. Radiation of energy and third-order equations of	
motion	399
7. Maxwell's equations with current	403
o. Emphant rotation in F	405
· +	410
10. Maxwell's equations derived from a variational	
principle	413
11. Maxwell's equations in moving matter	415
APPENDIX A. 3-waves and 2-waves	419
B. Radiation of energy from an accelerated charge	422
C. Scattering and capture by a fixed nucleus	426
D. The absolute 2-content of a 3-cell on a null cone	430
E. Calculations for retarded potential	432
References	435
Index	439