Table of Contents

Editorial Preface	> ix
Foreword	xi
Preface	xv

Part A

Chapter 1 / Concepts	
The Principle of Relativity	3
The Meaning of Motion in Relativity Theory	6
The Speed of Light in Relativity and Space-Time Fusion	8
Continuity Replaces Atomism	10
The Unified Field Concept	11
General Relativity and Geometry	14
A Generalized Mach Principle	17
	rer 1 / Concepts The Principle of Relativity The Meaning of Motion in Relativity Theory The Speed of Light in Relativity and Space-Time Fusion Continuity Replaces Atomism The Unified Field Concept General Relativity and Geometry A Generalized Mach Principle

Part B: Mathematical Preliminaries

Chap	ter 2/Vector-Tensor Analysis in Relativity Theory	21
2.1.	The Invariant Metric	21
2.2.	Special Relativity Transformations – The Poincaré Group	22
2.3.	The Contravariant Vector Field	25
2.4.	The Covariant Vector Field	25
2.5.	The Scalar Field	26
2.6.	Correspondence between Contravariant and Covariant Vector	
	Transformations in Special Relativity	26
2.7.	Tensors	27
2.8.	The Metric Tensor $g_{\mu\nu}(x)$	27
2.9.	The Inverse Metric Tensor Field	28

2.10.	Conversion between Contravariant and Covariant Tensor	20
0.11	Indices	29
2.11.	Transformation Properties of the Volume Element in General	•
0.10	Relativity	30
2.12.	Calculus of Vector and Tensor Fields in a Riemannian	
	Space-Time	31
	General Properties of the Covariant Derivative	33
	Derivation of the Affine Connection in Terms of $g_{\alpha\beta}$	35
2.15.	The Geodesic Equation	36
Chapt	er 3/Spinor-Quaternion Analysis in Relativity Theory	40
3.1.	Discovery of Spinor Variables in Physics	40
3.2.	The Algebra of Complex Numbers	41
3.3.	Group Properties of the Set of Complex Numbers	43
3.4.	The Algebra of Quaternions	44
3.5.	Group Properties of the Set of Quaternions	49
3.6.	The Spinor Field and Special Relativity	49
3.7.	Transformation Properties of a Spinor Variable	52
3.8.	The Explicit Form of Spinor Representations of the	
	Poincaré Group	53
3.9.	The Three-Dimensional Rotation Group and Spinor	
	Transformations	54
3.10	Lack of Reflection Symmetry in the Spinor Formulation	55
	Spinors and Quaternions in a Riemannian Space-Time	57
	Conjugation and Time Reversal of Spinor and Quaternion	57
J.12.	Fields	61
3 1 3	Quaternion Calculus	.62
		,02 64
	Spin-Affine Connection	
3.13.	Spinor Transformations in General Relativity	66

Part C: The Field Equations

Chapt	er 4 / The Matter Field Equations	73
4.1.	On the Origin of the Inertia of Matter and Mach's Principle	73
4.2.	The Matter Field Equations from Quaternion Calculus in	
	Special Relativity	77
4.3.	Relativistic Covariance	79
4.4.	The Bispinor Form of Dirac Equation	80
4.5.	The Inertial Mass Field from General Relativity	82
4.6.	The Matter Field Equations in General Relativity	85
4.7.	Gauge Invariance	86

4.8.	Electromagnetic Coupling	90
4.9.	The Null Electromagnetic Potential	91
4.10.	Matter and Antimatter from General Relativity	92
4.11.	The Quantum Mechanical Limit of the Matter Field Equations	92
	Energy and Momentum Operators	95
	On the Unification on Inertia, Gravitation, and Electro-	
	magnetism	96
4.14.	The Mass Spectrum of Elementary Matter	97
Chapte	er 5 / The Electromagnetic Field Equations	99
5.1.	Implications of the Generalized Mach Principle in	
	Electromagnetic Theory	99
5.2.	Vector-Tensor formulations of Maxwell's Equations in	
	Special Relativity	103
5.3.	Generalization of Maxwell's Equations in the Elementary	
	Interaction Formalism	106
5.4.	Conventional Forms of Maxwell's Equations in General	
	Relativity	108
5.5.	A Spinor Formulation of Electromagnetic theory in Special	
	Relativity	110
5.6.	Invariants and Conservation Laws	113
5.7.	The Lagrangian for the Spinor Formulation of Electro-	
0111	magnetism	115
5.8.	Solutions of the Spinor Field Equations	117
5.9.	Spinor Field Solution for a Static Point Charge	119
	Coulomb's Law	120
	The Spinor Formulation of Electromagnetism in General	120
5.11.	Relativity	124
512	Global Extension of the Spinor Conservation Laws	124
	The Electromagnetic Interaction Functional in the Matter	124
5.15.	Field Equations	128
	rieid Equations	120
	1 ·	
Chapt	er 6 / The Gravitational Field Equations and Unification	
	with Inertia and Electromagnetism	132
6.1.	Physics, Geometry, and Algebra	132
6.2.	Toward a Unified Field Theory	134
6.3.	Einstein's Field Equations and the Mach Principle	137
6.4.	The Riemann Curvature Tensor	139
6.5.	The Ricci Tensor	140
6.6.	The Einstein Field Equations	141
6.7.	Planetary Motion and the Schwarzschild Problem	142
6.8.	The Newtonian Limit	144
2.2.		

vii

6.9.	The Gravitational Red Shift	146
6.10.	The Precession of the Perehelion of a Planetary Orbit	148
6.11.	The Bending of Light	150
6.12.	The Variables of a Riemannian Space-Time in Quaternion Form	151
6.13.	Derivation of the Quaternion Metrical Field Equations from	
	the Principle of Least Action	153
6.14.	A Symmetric Tensor – Antisymmetric Tensor Representation	
	of General Relativity	156
	6.14.1. Einstein's Field Equations from the Symmetric	
	Tensor Part	157
	6.14.2. Maxwell's Field Equations from the Antisymmetric	
	Tensor Part	159
6.15.	On the Quantization of Electrical Charge in General Relativity	164
6.16.	Mass Doublets from General Relativity	167
6.17.	A Linear Approximation	168
6.18.	The Electron-Muon Mass Doublet	170
6.19.	Lifetime of the Muon	174
Chapt	er 7 / Astrophysics and Cosmology	177
7.1.	Introduction	177
7.2.	The Geodesic Equation in Quaternion Form	178
7.3.	Planetary Motion from the Quaternion Form of General	
	Relativity	182
7.4.	Application to the Schwarzschild Problem	184
7.5.	Comparisons of the Quaternion, Classical, and Tensor	
	Predictions of Planetary Motion	185
7.6.	The Radial Solutions and Perchelion Precession	187
7.7.	Implications of the Hubble Law and the Expanding Universe	189
7.8.	The Spiral Structures of Galaxies	193
7.9.	Conclusions	197
Biblio	graphy	201
Selecti	ions from the Author's Bibliography	202
Index		204

viii