PREFACE	v
PARTA: TACHYONS	
PART A1: TACHYONS IN RELATIVISTIC CLASSICAL THEORIES:	
 E.RECAMI: AN INTRODUCTORY VIEW ABOUT SUPERLUMINAL FRAMES AND TACHYONS Rivisiting the Postulates of Special Relativity (SR) Causality in SR Some consequences Extended Relativity: Historical Remarks Preliminaries (and caveats) on Tachyons The Generalized Lorentz Transformations (GLT) Tachyons and Causality Classical Physics for Tachyons Tachyons and Black-holes Virtual Particles and Tachyons Astrophysics and Superluminal Objects Note Added 	3
J.S.TREFIL: TACHYONS AND THE CAUSAL PARADOX	27
 H.C.CORBEN: ELECTROMAGNETIC AND HADRONIC PROPERTIES OF TACHYONS 1. Attitudes About Tachyons 2. Superluminal Trasformations 3. Electromagnetic Properties of Tachyons 4. Tachyons in Quantum Mechanics 5. A relativistically invariant hadron Bootstrap 	31
E.C.G.SUDARSHAN: TACHYONS AND THE SEARCH FOR A PREFERRED FRAME 1. Bradyons, Luxons and Tachyons 2. Transcendent Tachyons and the Reinterpretation Principle 3. The dazzling Tachyon Sky 4. Search for a Preferred Frame 5. Concluding remarks	43
Ya.P.TERLETSKY: ABOUT TACHYONS 1. The Electromagnetic Radiation of a Charged Tachyon 2. Some properties of Tachyons and Causality	47
K.Tahir SHAH: TACHYONS AND THEORY OF QUASI-CATASTROPHES	49
 A.J.KALNAY: COMPLEX PHYSICAL QUANTITIES AND SPACE-LIKE STATES 1. Introduction 2. Can Complex Numbers be the result of Experiments? 2a - The case of classical physics 2b - Quantum mechanics and non-normal operators 2c - Q.M., non-normal operators and extended variables 2d - Levy-Leblond's approach 	53

3. On Tachyon Physics

H.HÄNNI ar	nd E.HUGENTOBLER: TACHYONS AND EXPERIMENTAL PHYSICS 1. General Remarks	61
	2. Two possible Tachyon Detectors	
	2a - A Cherenkov detector for tachyons	
-	20 - A time-of-filght (TOF) tachyon detecting system	67
R.MIGNANI	: QUATERNIONS AND LORENTZ TRANSFORMATIONS	07
	2. Algebraic and metric properties of Quaternions	
	3. Minquats 4. Subluminal Loventz Transformations	
	5. Superluminal Lorentz Transformations	
	6. Complex Minkowski space-time, Magnetic Monopoles and Tachyons	
J.D.EDMONI	DS Jr.: COVARIANT QUANTUM EQUATIONS IN CURVED SPACE-TIME, LORENTZ COVARIANCE AND TACHYONS	79
	1. Hypercomplex numbers, Mass and Space-Time	
	2. Group structures in Nature's number system	
	3. Natural quantum equations	
	5. Curved Space Derivatives	
	6. Some considerations on the Gravity curvature equation	
M.CAMENZI	ND: TACHYON MATTER	89
	1. Introduction: The standard picture of the particle world	
	2. Spacelike representations of the Poincaré Group	
	3. Some properties of the Mass Shell	
	5. Tachyonic Matter and Curved Space-Times	
	6. Tachyonic Matter in the Gravitational Collapse	
V.DE SABB	ATA: BLACK HOLES AND MOTION OF TEST PARTICLES	99
M.PAVŠIČ:	UNIFIED DESCRIPTION OF BRADYONS AND TACHYONS	
	BASED ON THE DYNAMICAL SO(4,2) SYMMETRY	105
	1. Introduction	
	3. Motion of a photon	
	4. The law of motion in a curved (n^a) -space	
	5. Relation between the $scale \kappa$ and the type of particle	
G.ARCIDIA	CONO: TACHYONS AND MAGNETIC MONOPOLES IN THE DE SITTER UNIVERSE	115
	1. Introduction 2. The De Sitter-Castelnuovo space-time	
	3. The transformations of the Fantappié Group	
	4. The Cosmical Expansion and the red-shift laws	
	5. The De Sitter Universe and Mechanics	
	6. Magnetic Monopoles and Plasma's Physics	
	1. magnetic monopotes, hyperdense matter and cosmotogy	
R.GOLDONI	: FASTER-THAN-LIGHT PHENOMENA IN SPECIAL AND	125
	1. Introduction	167
	2. Special Relativity	
	3. Quantum field theory	

viii

- 4. General Relativity 5. Black-and-White-Holes
- 6. Conclusions

PART A2: TACHYONS IN RELATIVISTIC QUANTUM THEORIES

A.O.BARUT: SPACE-LIKE STATES IN RELATIVISTIC QUANTUM THEORY	143
1. Introduction	
2. Space-like Representations of the Poincaré Group II	
2a - Formulas for time-like case	
2b - Formulas for space-like case	
2c - Induced Representation from Little Groups	
3. Localization of Space-like States	
3a - The Imprimitivity System	
The couprignt formulation	
7. New Server of Jeselieshiliton for light libe and	
be - New Torms of Tocallzability for fight-like and	
space-like cases	
4. Passage to Covariant Wave Equations	
4a - Induced representations and wave equations	÷
4b - Induction from a Dynamical Group G	
5. Physical Interpretation of Space-like Solutions	
5a - Passage to space-time	
5h - Relativistic Dynamics	
5c - Transformations connecting inequivalent represent	ations
6 Space-like States in S-matrix theory and in Infinite-	auronont
U. Space-like States in S-matrix theory and in initiate-c	Soliponeno
wave Equations	
K.KAMOI and S.KAMEFUCHI: TACHYONS AS VIEWED FROM QUANTUM FIELD T	THEORY 159
1. Introduction	
2 Inversiont Delta Functions	
Z. Comprised Comprised	
5. Canonical Quantization	
4. An Alternative Approach	
5. Additional Remarks	
H.B.NIELSEN: TACHYONS IN FIELD THEORY: CONVENTIONAL TREATMENT	169
E.VAN DER SPUY: TACHYONS AND VIRTUAL FIELDS FOR ELEMENTARY PARTIC	IES
TN STRONG INTERACTIONS	175
	175
I Thereduction	117
2. The Reggeization of the Field	
3. Unstable Compounds: Resonances and Complex Regge Poles	3
II - TACHYONS: HOW?	183
D SHAY and K I. MILLER. SPIN-S TACHYONS AND THE PROPAGATION OF	
D. DIAT AND N. D. MILLING WE HAVE THE THOMASHION OF	185
D GUAN (T mouth) GTADIN WAVED	109
D.SHAY (1 part): SPIN-S TACHYONS	105
1. Introduction	
2. Spinors in the Zero Energy Frame	
3. Transformation of Tachyon Spinors	
4. Invariant Integral	
5. Conclusions	
D.SHAY and K.L.MILLER: PROPAGATION OF TACHYON WAVES	189
1. Introduction	-

- 2. Phase and Group Velocity
- 3. Wave Packets
- 4. Delta Function Pulses
- 5. Conclusions

J.KRÜGER: JOINT DISTRIBUTIONS AND TACHYONS

- 1. Introduction
- 2. Wigner-Distribution and its Generalization in the Non-relativistic Theory

195

3. Relativistic J.D.F. and Green Functions

PART B:

MONOPOLES, TACHYONS, AND RELATED TOPICS

E.FERRARI:	ARI: FORMULATION OF ELECTRODYNAMICS WITH MAGNETIC MONOPOLES					
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	The Basic Features of the theory of Maxwell-Dirac Monopoles The first Dirac paper on Monopoles The Dirac Formulation of Electrodynamics with Monopoles The Schwinger Formulation The Zwanziger Formulation Feynman Diagrams The Cabibbo-Ferrari Formulation The Wu-Yang Approach Conclusions Note Added					
A.O.BARUT: 1. 2. 3. 4. 5.	ELECTRODYNAMICS WITH STRINGS AND MONOPOLES Introduction The Completion of Dirac's Action Principle and Removal of Difficulties Coordinate Independent Formulation on Manifolds and Topological Aspects Some new Quantum Effects: Parity and Superselection Rules Realistic Hadron Models: Dyonium - Extended Dyonium	227				
G.PARISI: N	ON CONVENTIONAL MONOPOLES IN FIELD THEORY	233				
M.GARCÍA-SUC	CRE: REFERENCE FRAMES AND THE VELOCITY OF LIGHT	235				
R.CASALBUONI 1. 2. 3. 4.	COLORED QUARKS AND OCTONIONS Colour Octonions in Mathematics The Description of the Physical States Octonions and Exceptional Lie Groups	247				
G.ZIINO: CH	IRALITY INVARIANCE AND "CHIRAL" FIELDS	261				

APPENDIX

E.RECAMI:	NEW EVIDENCE (ON TH	E LIFE	OF	ETTORE	MAJORANA	2	:69
-----------	----------------	-------	--------	----	--------	----------	---	-----

1. Foreword 2. The last letters of Ettore 3. The Man and the Scientist	e Majorana
LIST OF PARTICIPANTS	279
AUTHOR INDEX	283