INDICE

J.	EHLI	ers –	· Prefa	ce	• •	•			•	•	•		•	•	•	•	•	•	•	•	pag.	XIII
Gr	appo	fotog	rafico	dei	pa	rteo	eipa	anti	\mathbf{al}	С	\mathbf{ors}	0								f	uori	testo

J. EHLERS - Introduction. Survey of problems.

1.	Space-time, gravity, local description of matter			pag.	1
2.	Bodies and laws of motion		•	»	3
3.	Isolated systems. Boundary conditions, asymptotics			»	5
4.	Approximation methods, equations of motion			»	7

B. G. SCHMIDT - Asymptotic structure of isolated systems.

0.	Introduction	11
1.	Infinity of Minkowski space »	12
2.	Asymptotic behaviour of fields on Minkowski space »	20
3.	Null infinity	27
4.	Spacelike infinity	34
5.	The conformal \dot{b} -boundary	37

M. WALKER – Asymptotic symmetries, energy-momentum and angular momentum at future null infinity.

	1. Introduction	•	»	50
	2. Asymptotic symmetries		»	50
	3. Definitions of energy-momentum and angular momentum	•	»	55
	4. Expressions for energy-momentum and angular momentum	L	»	57
М.	WALKER – Remarks on Trautman's radiation condition.		»	61

73

»

в.	Br an	CAMSON – The transmission of electromagnetic waves from isolated system.	
	1.	Introduction	6
	2.	Isolated systems	6
	3.	Spin and conformal weights »	6
	4.	The Maxwell field	6
	5.	The observation space	6
	6.	Dipoles, Hertz potentials and the transmission of radiation »	$\overline{7}$

Р.	HAVAS – Equations of motion and radiation reaction in the
	special and general theory of relativity

special	and	general	theory	01	relativity.	

1.	Laws of motion, force and field: from Newton to Einstein	»	74
	1'1. Introduction	»	74
	1 ² . Newtonian dynamics	»	75
	1 ³ . Electrodynamics	»	77
	1'4. Maxwell's theory of gravitation	»	83
	1'5. Special and general theory of relativity	»	84
2.	Special-relativistic laws and equations of motion	»	89
	2'1. The relation of special- and general-relativistic dynamics	»	89
	2'2. Point particles	»	93
	2'3. Extended bodies	»	101
	2'4. The center-of-mass problem	»	104
	2'5. Examples	»	110
	2.6. Finite self-fields and radiation reaction	*	111
3.	General-relativistic laws and equations of motion	»	118
	3'1. The laws of motion	»	118
	3 [°] 2. The approximation method	»	124
	3. The first-order metric and the self-action terms	»	132
4.	Applications, alternatives, conclusions	»	138
	41. The two-body problem	»	138
	4.2. Linear theories of gravitation	»	143
	4'3. An alternate «fast motion » approximation	»	146
	4. Alternative treatment of radiation reaction	»	147
	4 [•] 5. Conclusions	»	148

W.G. DIXON - Extended bodies in general relativity; their description and motion.

1.	Introduction	»	156
2.	Physical idealizations	»	157
	2'1. Point masses in the Newtonian theory of gravitation 2'1.1. The mass centre	» » ·	$\begin{array}{c} 157 \\ 159 \end{array}$

	2'1.2. The momentum-velocity relation	•]	pag.	$159 \\ 160$
	2° 1.4. The self-field \ldots	:	»	160
	2.1.5. The self-force and self-torque		»	161
	2'1.6. Multipole expansion of the external field	•	»	161
	2'1.7. Multipole expansion of the external force an	ıd		1 00
	2'1 8 Transition to the point-particle model	•	» »	162
	2'2. Newtonian rigid hodios	•	"	163
	2'3. Scope of the corresponding relativistic theory	•	»	163
3.	Some mathematical techniques		»	166
	3'1. The world function.		»	166
	3.2. Horizontal and vertical covariant derivatives		»	168
4.	The mass centre in general relativity		»	170
	4'1. Momentum and angular momentum		»	171
	4'2. Definition of force and torque		»	173
	4'3. Characterization of the mass centre		»	174
	4'4. The momentum-velocity relation		»	176
	4'5. Alternative definitions	•	»	178
5.	Description of extended bodies		»	179
	5'1. The energy-momentum skeleton		»	180
	5'2. Evaluation of the gravitational force and torque		»	183
	5'3. Abstraction from the space-time		»	187
	5'4. The extended energy-momentum skeleton		»	188
6.	Conjectures on unsolved problems		»	189
	6 [•] 1. The self-field		»	189
	6'2. The self-force and self-torque		»	191
7.	Relativistic multipole moments.		»	192
	71. Definition and basic properties of the moments		»	192
	7'2. The moments in special relativity		»	194
	7.3. The difference force and torque		»	196
	7'4. The test body approximation		»	196
	7.5. Moments relative to a rotating frame	•	»	198
8.	Rigid bodies in general relativity		*	201
	8'1. Kinematical and dynamical rigidity		»	201
	8'2. Rates of change in relativistic rotating frames		»	204
	8'3. Mean angular velocity and total internal energy		»	206
	8'4. Dynamical rigidity in general relativity		»	209
9.	Discussion and outlook	•	»	212
A	PPENDIX Outline proof of the existence of the energy	y-		
	momentum skeleton		»	213

W.L. BURKE – The slow-motion approximation in radiation problems.

1.	Introduction	220
	1'1. The problem	220
	1'2. The method	221
	1 ³ . The results »	222
2.	Singular perturbations »	222
	2'1. Asymptotic expansion »	222
	2'2. Singular perturbations »	224
	2'3. Matching	225
	2'4. Two-timing	229
	2'5. A problem	231
3.	Radiation damping »	231
	3.1. General discussion »	232
	3'2. Example: acoustics »	232
	3.3. Matching	234
	3.4. Radiation resistance »	234
4.	Gauge invariance and conservation laws »	235
	4 ¹ . Gauge invariance »	235
	$4^{\circ}2$. Multipoles	236
	4'3. Electrodynamics »	236
5.	Gravitational radiation »	238
	51. Structure of the problem »	238
	5'2. The near-zone expansion »	239
	5'3. Relation to linear theory »	240
	5'4. Radiation damping »	241
	5'5. Falling charges »	242
6.	Critique	242
	61. Completeness of the matching »	242
	6'2. Radiation conditions »	242
	6'3. Relation to other expansions »	243
	6.4. Strong-field slow-motion expansions »	244
	6'5. Additional singular limits	244
	6.6. The validity of our expansion	246
	6'7. Backscatter	247
	6'8. Error estimates »	247
7.	Conclusions.	247

P. D. D'EATH – Perturbation methods for interactions between strongly self-gravitating systems.

1.		»	249
2.	Perturbation theory in general relativity	»	251
3.	Interactions between a self-gravitating body and its sur-		
	roundings	»	257
4.	Dynamics of two slowly-moving black holes	»	268
5.	Gravitational radiation from high-speed black-hole encounters	»	280

INDICE

J. L. ANDERSON - Approximation methods in general relativity.

	 Introduction	pag. * * * * * *	289 292 293 297 300 302 305
R.	BEIG - A solvable model for radiation damping	»	307
А.	ROSENBLUM – Gravitational energy loss in scattering prob- lems	»	313
E.	RUDOLPH – Relativistic observable effects in the binary pulsar PSR 1913+16	»	318
А.	E. FISCHER and J. E. MARSDEN – Topics in the dynamics of general relativity.		
	Introduction	*	322
	1 Sobolev spaces and decomposition theorems	»	323
	2. The Hamiltonian structure of geometrodynamics.	»	328
	3. The constraint manifold	»	343
	4. The linearized Einstein system	»	352
	5. Linearization stability of the vacuum Einstein equations.	»	362
	 6. Decomposition of tensors	»	374
	tational degrees of freedom	»	380
	8. Current work and open problems	»	385
	APPENDIX I. – Variational derivatives of the scalar curvature	»	387
	mutation relations	»	389
Y.	CHOQUET-BRUHAT, A. E. FISCHER and J. E. MARSDEN – Maximal hypersurfaces and positivity of mass.		

Int	roduction.																		»	396
1.	Weighted	Sobo	lev	and	H	ölde	r s	spa	\mathbf{ces}	•								·.	»	401
2.	The existe	ence o	of r	naxii	mal	hy	pe	rsu	rfa	\cos		•	•	•	•	•	•	•	»	407

3.	Applications to linearization stability	pag.	413
4.	Geometric applications of maximal hypersurfaces	»	418
5.	Derivation of the mass formula	»	423
6.	Time-symmetric initial data sets as minima of mass	»	426
7.	Positivity of mass for space-times satisfying the weak and strong energy conditions.	»	429
8.	Discussion of the global problem	»	446
9.	The mass function as a Liapunov function	»	449
10	. The mass function as the generator of time translation	»	451

H. MÜLLER ZUM HAGEN and H.-J. SEIFERT – The characteristic initial-value problem in general relativity.

0.	Introduction	457
1.	Preliminary remarks: properly posed problems »	457
	11. Characterization of solution by data »	-457
	12. Existence proofs and stability.	458
	1 ³ . Examples	459
	14. Domains of dependence	460
2.	The characteristic initial-value problem for linear hyperbolic	
	equations	460
	2.1. The wave equation as a simple example	460
	2'1.1. The analytic Cauchy problem	> 460
	2.1.2. The characteristic problem \ldots	$\rightarrow 461$
	21.3. Local solution in the analytic case	$\rightarrow 401$
	2'1.5. Energy conservation	$\rightarrow 463$
	2'2. The statement of the general problem	» 463
	2'3. A sketch of the treatment of the problem	» 464
	2'4. Sobolev spaces	» 467
	2.5. Propagation along bicharacteristics	» 469
	2.6. The statement of theorem 1	» 470
3.	The quasi-linear case	» 472
	3.1. The statement of theorem 2	» 472
	3'2. A sketch of the proof (iteration procedure)	» 472
4.	The Einstein vacuum field equations	» 473
	4.1. The problem with the geometrical picture	» 473
	4'2. The statement of theorem 3	» 474
	4 [•] 3. A sketch of the proof	» 475
5.	Concluding remarks	» 477

INDICE

D. CHRISTODOULOU and M. FRANCAVIGLIA – The geometry of the thin-sandwich problem.

1.	Introduction	•					pag.	480
2.	The spaces $\operatorname{Riem}(M)$ and $\mathscr{S}(M)$						»	480
3.	A definition of time					•	»	483
4.	Construction of space-time						»	484
5.	The action principle				•		»	486
6.	Definition of arc length in $\mathscr{S}(M)$	•		•			»	487
7.	The homogeneous correspondence equation .						»	490
8.	Some particular cases						»	492
9.	The inhomogeneous correspondence equation						»	494
10	The uniqueness of arc length in $\mathscr{S}(M)$						»	495

Note: The six lectures on The Perturbations of the Schwarzschild and the Kerr Metric given by S. CHANDRASEKHAR were largely based on the following papers: Proc. Roy. Soc., 343, 289; 344, 441; 345, 145 (1975); 348, 39; 349, 1, 571; 350, 165 (1976); 352, 325 (1977).