CONTENTS

	р.
PREFACE BY W. PAULI	v
PREFACE BY A. SOMMERFELD	xi
BIBLIOGRAPHY	xiii

Part I. The foundations of the special theory of relativity

1.	Historical background (Lorentz, Poincaré, Einstein)	1
2.	The postulate of relativity	4
3.	The postulate of the constancy of the velocity of light. Ritz's and related	
	theories	5
4.	The relativity of simultaneity. Derivation of the Lorentz transformation	
	from the two postulates. Axiomatic nature of the Lorentz transformation	9
5.	Lorentz contraction and time dilatation	11
6.	Einstein's addition theorem for velocities and its application to aberration	
	and the drag coefficient. The Doppler effect	15

Part II. Mathematical tools

7.	The four-dimensional space-time world (Minkowski)	21
8.	More general transformation groups	22
9.	Tensor calculus for affine transformations	24
10.	Geometrical meaning of the contravariant and covariant components of a	
	vector	27
11.	"Surface" and "volume" tensors. Four-dimensional volumes	30
12.	Dual tensors	33
13.	Transition to Riemannian geometry	34
14.	Parallel displacement of a vector	37
15.	Geodesic lines	39
16.	Space curvature	41
17.	Riemannian coordinates and their applications	44
18.	The special cases of Euclidean geometry and of constant curvature	48
19.	The integral theorems of Gauss and Stokes in a four-dimensional Riemannian	
	manifold	52
20.	Derivation of invariant differential operations, using geodesic components	56
21.	Affine tensors and free vectors	60
22.	Reality relations	62
23.	Infinitesimal coordinate transformations and variational theorems	64

Part III. Special theory of relativity. Further elaborations

	(a) Kinematics	
24.	Four-dimensional representation of the Lorentz transformation	71
25.	The addition theorem for velocities	73
26.	Transformation law for acceleration. Hyperbolic motion	74
	(b) Electrodynamics	
27.	Conservation of charge. Four-current density	76
28.	Covariance of the basic equations of electron theory	78
29.	Ponderomotive forces, Dynamics of the electron	81

20.	i ondoromotive forces. Dynamics of the electron		01
30.	Momentum and energy of the electromagnetic field.	Differential and integral	
	forms of the conservation laws	-	85
31.	The invariant action principle of electrodynamics		88

viii	Contents	
32.	Applications to special cases	
	(α) Integration of the equations for the potential	90
	(β) The field of a uniformly moving point charge	91
	(γ) The field for hyperbolic motion	92
	(δ) Invariance of the light phase. Reflection at a moving mirror. Radiation	
	pressure	94
	(ϵ) The radiation field of a moving dipole	97
	(ζ) Radiation reaction	99
<u>33</u> .	Minkowski's phenomenological electrodynamics of moving bodies	99
34.	Electron-theoretical derivations	104
35.	Energy-momentum tensor and ponderomotive force in phenomenological	
	electrodynamics. Joule heat	106
36.	Applications of the theory	
	(α) The experiments of Rowland, Röntgen, Eichenwald and Wilson	111
	(β) Resistance and induction in moving conductors	113
	(γ) Propagation of light in moving media. The drag coefficient. Airy's experi-	119
	ment	115
	(b) Signal velocity and phase velocity in dispersive media	119
	(c) Mechanics and general dynamics	
37.	Equation of motion. Momentum and kinetic energy	115
38.	Relativistic mechanics on a basis independent of electrodynamics	118
39.	Hamilton's principle in relativistic mechanics	119
40.	Generalized coordinates. Canonical form of the equations of motion	121
41.	The inertia of energy	121
42.	General dynamics	123
43.	Transformation of energy and momentum of a system in the presence of external	
	forces	125
44.	Applications to special cases. Trouton and Noble's experiment	127
45.	Hydrodynamics and theory of elasticity	130
(d) Thermodynamics and statistical mechanics		

46.	Behaviour of the thermodynamical quantities under a Lorentz transformation	134
47.	The principle of least action	135
48.	The application of relativity to statistical mechanics	136
49.	Special cases	
	(α) Black-body radiation in a moving cavity	138
	(β) The ideal gas	139

Part IV. General theory of relativity

50.	Historical review, up to Einstein's paper of 1916	142
J 1.	gravitation and metric	145
52.	The postulate of the general covariance of the physical laws	149
53.	Simple deductions from the principle of equivalence	
	(α) The equations of motion of a point-mass for small velocities and weak	
	gravitational fields	150
	(β) The red shift of spectral lines	151
	(γ) Fermat's principle of least time in static gravitational fields	154
54.	Influence of the gravitational field on material phenomena	156
55.	The action principles for material processes in the presence of gravitational	
	fields	158
56.	The field equations of gravitation	159
57.	Derivation of the gravitational equations from a variational principle	161
58.	Comparison with experiment	
	(α) Newtonian theory as a first approximation	162
	(β) Rigorous solution for the gravitational field of a point-mass	164
	(γ) Perihelion precession of Mercury and the bending of light rays	166
59.	Other special, rigorous, solutions for the statical case	170
60.	Einstein's general approximative solution and its applications	172

	$\operatorname{Contents}$	ix
61.	The energy of the gravitational field	175
62.	Modifications of the field equations. Relativity of inertia and the space-bounded	
	universe	
	(α) The Mach principle	179
	(β) Remarks on the statistical equilibrium of the system of fixed stars. The	
	λ -term	179
	(γ) The energy of the finite universe	182

Part V. Theories on the nature of charged elementary particles

63.	The electron and the special theory of relativity	184
64.	Mie's theory	188
65.	Weyl's theory	192
	(α) Pure infinitesimal geometry. Gauge invariance	193
	(β) Electromagnetic field and world metric	194
	(γ) The tensor calculus in Weyl's geometry	196
	(δ) Field equations and action principle. Physical deductions	198
66.	Einstein's theory	202
67.	General remarks on the present state of the problem of matter	205
Sui	PPLEMENTARY NOTES	207
Αυ	THOR INDEX	233
Sui	BJECT INDEX	236