TABLE OF CONTENTS

I. MICHELSON'S INTERFERENCE EXPERIMENT. By H. A. Lorentz . §1. The experiment. §2. The contraction hypothesis. §§3-4. The contraction in relation to molecular forces.	PAGES 1-7
II. ELECTROMAGNETIC PHENOMENA IN A SYSTEM MOVING WITH ANY VELOCITY LESS THAN THAT OF LIGHT. By H. A. LORENTZ.	0.94
 § 1. Experimental evidence. § 2. Poincaré's criticism of the contraction hypothesis. § 3. Maxwell's equations for moving axes. § 4. The modified vectors. § 5. Retarded potentials. § 6. Electrostatic fields. § 7. A polarized particle. § 8. Corresponding states. § 9. Momentum of an electron. § 10. The influence of the earth's motion on optical phenomena. § 11. Applications. § 12. Kaufmann's experiments. 	9-34
 III. ON THE ELECTRODYNAMICS OF MOVING BODIES. By A. Einstein. KINEMATICAL PART. § 1. Definition of simultaneity. § 2. On the relativity of lengths and times. § 3. The transforma- tion of co-ordinates and times. § 4. Physical meaning of the equations. § 5. The composition of velocities. ELECTRODYNAMICAL PART. § 6. Transformation of the Max- well-Hertz equations. § 7. Doppler's principle and aber- ration. § 8. The energy of light rays and the pressure of radiation. § 9. Transformation of the slowly accel- erated electron. IV. DOES THE INFERTA OF A BODY DEPEND UPON ITS ENERGY- 	35-65
CONTENT? By A. Einstein	67-71
 V. SPACE AND TIME. By H. Minkowski. I. The invariance of the Newtonian equations and its representation in four dimensional space. II. The world-postulate. III. The representation of motion in the continuum. IV. The new mechanics. V. The motion of one and two electrons. 	73-91
Notes on this paper. By A. Sommerfeld. VI. ON THE INFLUENCE OF GRAVITATION ON THE PROPAGATION OF	92-96
LIGHT. By A. Einstein	97-108
§ 1. The physical nature of gravitation. § 2. The gravitation of energy. § 3. The velocity of light. § 4. Bending of light-rays.	
vii	

PAGES 1-7

viii THE PRINCIPLE OF RELATIVITY

VII. THE FOUNDATION OF THE GENERAL THEORY OF RELATIVITY. By

PAGES

- A. FUNDAMENTAL CONSIDERATIONS ON THE POSTULATE OF RELA-TIVITY. § 1. Observations on the special theory. § 2. The need for an extension of the postulate of relativity. § 3. The space-time continuum; general co-variance. § 4. Measurement in Space and Time.
- B. MATHEMATICAL AIDS TO THE FORMULATION OF GENERALLY COVARIANT EQUATIONS. § 5. Contravariant and covariant four-vectors. § 6. Tensors of the second and higher ranks. § 7. Multiplication of tensors. § 8. The fundamental tensor $g_{\mu\nu}$. § 9. The equation of the geodetic line. § 10. The formation of tensors by differentiation. § 11. Some cases of special importance. §12. The Riemann-Christoffel tensor.
- C. THEORY OF THE GRAVITATIONAL FIELD. § 13. Equations of motion of a material point. § 14. The field equations of gravitation in the absence of matter. § 15. The Hamiltonian function for the gravitational field. Laws of momentum and energy. § 16. The general form of the field equations. § 17. The laws of conservation. § 18. The laws of momentum and energy.
- D. MATERIAL PHENOMENA. § 19. Euler's equations for a fluid. § 20. Maxwell's equations for free space.
- E. APPLICATIONS OF THE THEORY. § 21. Newton's theory as a first approximation. § 22. Behaviour of rods and clocks in a static gravitational field. Bending of light rays. Motion of the perihelion of a planetary orbit.
- VIII. HAMILTON'S PRINCIPLE AND THE GENERAL THEORY OF RELA-
 - § 1. The principle of variation and the field-equations. § 2. Separate existence of the gravitational field. § 3. Properties of the field equations conditioned by the theory of invariants.
 - IX. Cosmological Considerations on the General Theory of
 - according to the general theory of relativity. § 3. The spatially finite universe. § 4. On an additional term for the field equations of gravitation. § 5. Calculation and result.
 - X. DO GRAVITATIONAL FIELDS PLAY AN ESSENTIAL PART IN THE STRUCTURE OF THE ELEMENTARY PARTICLES OF MATTER?
 - of scalars. § 3. On the cosmological question. § 4. Concluding remarks.

XI. GRAVITATION AND ELECTRICITY. By H. Weyl 200-216