CONTENTS

INTRODUCTION	13
Chapter I. A SURVEY OF SOME EXPERIMENTAL RESULTS RELAT- ING TO THE PROPAGATION OF LIGHT AND CONNECTED	
PHENOMENA	19
A. The critical velocity	19
B. Measurement of the velocity of propagation of light signals	21
1. A general remark	21
2. The suggestion of Galilei	22
3. Astronomical methods	22
a. Observations of Römer	22
b. The aberration of light	23
4. Laboratory methods	24
a. Methods of Fizeau and of Foucault	24
b. The experiments of Fizeau and Foucault	24
5. The propagation of light in refractive media	26
a. The refractive index	26
b. The determination of the velocity of light in a refracting medium	27
C. Interferometric methods for the measurement of the velocity of light	28
1. The Michelson interferometer	28
2. Measurement of the phase velocity of light	31
3. The experiment of Fizeau	32
D. The Doppler effect	33
1. Moving source	34
2. Observation of the Doppler effect	36
E. The perpendicular Doppler effect	37
1. Experimental observations	37
2. Physical interpretation of the perpendicular Doppler effect	38
3. Considerations in connection with the Doppler effect	40
a. The question of the moving observer	40
b. Acoustical and electromagnetic Doppler effects	41
F. Some relativistic effects	43
1. Variation of decay time with velocity	43

5

2. Change of mass with velocity	44
3. Remark on the methods of measuring the mass velocity relation	45
Chapter II. INVESTIGATIONS CONCERNING THE CARRIER OF	
ELECTROMAGNETIC WAVES	48
A. The question of the ether	48
B. Experimental investigations	50
1. Rotation of the Earth	50
2. The Sagnac experiment	50
3. The experiment of Michelson and Gale	53
C. Translational motion relative to the ether	53
1. Propagation of a spherical signal	56
2. Propagation of light relative to a moving system of reference	57
3. The Michelson-Morley experiment	59
4. The interpretation of the negative result of the Michelson-Morley	
experiment	60
5. Considerations concerning the contraction hypothesis	64
D. Experiments of the Michelson-Morley type	65
1. The Trouton-Noble experiment	65
2. The experiment of Isaak and co-workers	66
E. General remarks concerning the series of negative results	69
1. Generalization of negative experiences	71
Chapter III. THE PROBLEM OF MEASUREMENT	72
A. The problem of measures	72
1. Representations	72
2. An example: the measure of electric charge	73
3. Distinguished representations	76
4. Measures of lengths	77
B. Systems of space coordinates	79
1. Determination of coordinate vectors	79
2. Explicit determination of coordinate measures	81
3. Question of consistency	83
4. Various representations	83
C. Problems connected with coordinate representations	86
1. Remark on "non-Euclidean" geometry	86
2. Coordinate transformations and deformations	86
3. Orthogonal transformations	89
a. Definitions	89
b. Group character of orthogonal matrices	90
4. Rigid bodies	92
Chapter IV. THE LORENTZ TRANSFORMATION	94
A. The time scale	94

	1. General remarks	94
	2. Atomic time scale	97
	3. Systems of reference constructed with the help of light signals	98
В.	The Lorentz transformation as coordinate transformation	100
	1. The explicit form of the Lorentz transformation	102
	2. The physical significance of the parameters of the Lorentz matrices	104
C.	Homogeneous propagation of light	106
	1. The concept	106
	2. Test for homogeneous propagation of light	107
	3. Connection between various representations	108
	a. Transformations of the propagation tensor	109
D.	The relation of systems of references obtained with light signals and with	
	solids	110
Chap	ter V. THE LORENTZ PRINCIPLE	114
A.	The Lorentz transformation as deformation	114
	1. Deformation operators	114
	2. Lorentz deformations	116
	3. Particular types of Lorentz deformations	117
В.	Formulation of the Lorentz principle	120
	1. Interpretation of the negative results of ether drift experiments in terms	
	of the Lorentz principle	120
	2. Non-orthogonal representations	123
	3. General remarks on the Lorentz principle	124
C.	The dynamical principle	125
	1. The mechanism of the Lorentz deformation	127
	a. Relaxation processes	127
	b. Comparison between change of temperature and change of trans-	
	lational state	128
	c. Deformations of unconnected systems	128
	d. Length contraction of non-connected systems	130
	2. Significance of subgroups of the Lorentz group	131
Chap	ter VI. THE INNER CONSISTENCY OF THE LORENTZ PRINCIPLE	133
Α.	Kinematical considerations in connection with the Lorentz principle	133
	1. Addition of velocities	133
	2. Addition formula and Lorentz deformations	136
B.	Considerations about contraction of solids and the slowing down of clocks	137
	1. The clock "paradox"	142
	2. The "paradox of the twins"	146
Chap	ter VII. RELATIVISTIC MECHANICS	148
Α.	Momentum and energy	148
	1. Newton's first law	148

2. Elastic collisions	149
3. Inelastic collisions	153
B. Equivalence of mass and energy	154
1. Remark on the mechanism of increase of mass with energy	155
C. Distant collisions	155
1. Experimental evidence	157
D. Mechanical laws in terms of four-vectors and tensors	157
1. Newton's laws	159
2. The energy-momentum tensor	160
Chapter VIII. THE ELECTROMAGNETIC FIELD	162
A. Maxwell's equations	162
1. Another formulation	163
B. Solutions of Maxwell's equations	165
1. Gauge transformation	167
2. Retarded potentials	168
3. Advanced potentials	169
4. Wandering waves	171
C. Maxwell's equations in terms of four-tensors	172
1. Retarded four-potential	174
2. The motion of light signals in terms of Maxwell's equations	177
D. Maxwell's equations and the Lorentz principle	179
1. The field of a point charge	181
Chapter IX. RELATIVISTIC EFFECTS OF THE ELECTROMAGNET	TIC
FIELD	183
A. Effects of the first order	183
1. Effective field strengths	183
2. The field of dipoles	184
B. Transformation properties of four-currents	186
1. The electric field of a moving current	187
C. Further effects of the first order	189
1. Doppler effect and aberration	189
2. Frequencies of the Doppler effect	190
3. Effect of aberration	191
4. Intensities in the Doppler effect	192
5. Observation of the effect of aberration of star light	193
6. Propagation of light in a refracting medium	195
a. Dispersion	197
7. The experiment of Fizeau	199
D. Effects of the second order	202
1. Action of a charge upon itself	202
2. Mass detect	205
E. Relativistic mechanics of a continuum	206

8

1. Interpretation of the Trouton-Noble experiment	206
F. Transient phenomena	207
Chapter X. THEORY OF GRAVITATION	211
A. Observational facts	211
B. Statement of the problem of the theory of gravitation	212
1. Mathematical formulation of the problem	214
2. Experimental criteria for homogeneous regions	214
a. An example	216
3. Construction of straight systems of references	216
a. Locally homogeneous regions	217
b. Criteria for homogeneous regions	218
4. Almost straight system of reference	222
5. Similar regions	225
C. The generalized Lorentz principle	226
1. The Lorentz principle formulated in terms of curved coordinates	227
2. Generalization to inhomogeneous regions	228
a. A physical example	228
3. The Lorentz principle valid for small physical systems	230
a. First approximation	230
b. A second approximation	231
4. The ambiguity in the formulation of the Lorentz principle	233
Chapter XI. APPLICATIONS OF THE GENERALIZED LORENTZ	
PRINCIPLE	235
A. Geodetic orbits	235
1. Definition	335
2. Lorentz invariance of geodetic orbits	236
a. Geodetic orbits and the Lorentz principle	237
B. Equation of motion in a gravitational field	237
1. Variational principles	238
a. Deviations from geodetic orbits	239
2. The physical contents of the variational principle	239
C. Connection between a gravitational field and the propagation of ligh	t 242
1. The equations of motions in a gravitational field	242
2. Integrals of the equations of motions	244
a. Perihelion motion	245
b. The deflection of light in the vicinity of the Sun	246
c. The red shift of spectral lines	247
D. Connection between the sources of gravitation and the propagation ten	-
sor g	249
1. Einstein's equations of gravitation	250
2. Energy momentum considerations	251

3. The Schwarzschild solution of the gravitational equations	253
4. The relativistic effects in the field given by Schwarzschild	255
a. The planetary motion	255
b. Deflection of light	256
E. Electromagnetic field and gravitation	256
1. An invariant formulation	257
2. Question of electromagnetic polarization of the ether	258
3. Remark on the consistency of the generalized theory of electroma	gnetic
fields	258
F. Energy and momentum relations of the gravitational field	260
1. The gravitational force	260
2. Another aspect of the gravitational equations	261
3. The mechanism of the gravitational force	262
Chapter XII. COSMOLOGICAL PROBLEMS	264
A. The physical significance of invariant formulation of physical law	vs 264
1. Tensors and distinguished measures	265
2. The physical significance of the tensor g	266
3. A normal form of the propagation tensor	267
B. Physical contents of particular representations	270
1. Stationary representations	270
2. The energy momentum distribution	271
C. Cosmological problems	272
1. The results of astronomical observations	272
2. The solution of Friedmann	273
D. Analysis of Friedmann's solution	276
1. The recession of the Galaxies	276
a. The measures of intergalactical distances	276
b. Doppler effect	278
E. Mach's principle	279
a. The Thirring effect	280
Appendix I. TENSOR ANALYSIS IN HOMOGENEOUS REGIONS	282
A. Systems of reference	282
1. The Lorentz system	282
2. Straight systems of reference	283
3. Propagation tensor g	283
4. Lorentz transformation	284
5. Standard form of linear coordinate transformations	285
B. Vectors and tensors	286
1. Two-dimensional tensors	287
a. Invariant products	288
b. Pseudo scalar	289

C. Fields	289
1. The \mathfrak{N} operator	291
a. The Grad operator	291
b. Further operations	292
Appendix II. TENSORS IN INHOMOGENEOUS REGIONS	293
A. More-dimensional measures	293
1. k-dimensional measures	293
2. Multiplication of more-dimensional quantities	294
B. Permutation operators	295
1. Cyclic permutations	297
2. The transposition of a matrix	298
3. The π_l operators	299
C. The \Re operator in curved representations	299
1. Tensor of several dimensions	300
2. Symmetry properties	301
(4)	
3. The antisymmetric tensor ϵ	302
D. Tensor fields	303
1. The Christoffel bracket symbols	305
2. The covariant differentiation	306
E. Criteria for homogeneous regions	308
1. Almost straight representations	310
2. Tensor character of the Riemann-Christoffel tensor	312
(4) 3. Symmetries of the R tensor	314
(4)	
4. The reduced form of the \mathbf{R} tensor	316