CONTENTS

INTRODUCTION	7
ΝΟΤΑΤΙΟΝ	9
Chapter I	
GRAVITATIONAL INTERACTION AND THE GENERAL THEORY OF MOTION	
1. General statement of the physical problem. Particles and the	
gravitational field	14
2. Nowton's theory of gravitation	23
3. Interaction in G. R. T. The equations of motion of the first	00
	29
4. The Einstein field equations	35
5. The Blanchi identities	41
6. The equations of motion are a consequence of the field equations	44
7. Forms for the equations of motion of the second kind	49
8. The equations of motion in gravitational and non-gravitational	~ 0
	56
9. Equations of motion in different coordinate systems	59
10. On the method of solution of the field equations with the help of	
the dipole procedure	63
Chapter II	
THE APPROXIMATION METHOD AND THE EQUATIONS OF MOTION	
1. General remarks on the approximation method	68
2. On the development of the metric field	71
3. On the three levels of our reasoning	73
4. The approximation method and the coordinate system	75
5. The approximation method and the field equations	78
6. On the two forms of the equations of motion and the integrability	
conditions	89
Chapter III THE NEWTONIAN AND POST-NEWTONIAN APPROXIMATION	
1 Whe Newtonian enumerimetion	0.0
1. The rewtonian approximation	90
2. The gravitational field for the post-Newtonian equations of motion	109
3. The equations of motion in the post-Newtonian approximation .	103
4. The conservation laws for a system of particles	114

CONTENTS

Chapter IV

THE VARIATIONAL PRINCIPLE AND THE EQUATIONS OF MOTION OF THE THIRD KIND

1.	Formulation of the problem	118
2 .	The Lagrangian up to the sixth order	124
3.	Generalization	129
4.	A Fokker-type Lagrangian for rotating bodies	130

Chapter V

THE ONE AND TWO PARTICLE PROBLEMS

1.	On the question of measurement	136
2.	On the motion of a test particle in the field of a heavy particle	144
3.	The two-body problem	149
4.	The motion of rotating bodies	155

Chapter VI

MOTION AND RADIATION

1. A simple example	160
2. The equations of motion in the form of a surface integral	166
3. The equations of motion in the form of a space integral	169
4. The equations of motion in the form of space and surface integrals	170
5. The consequences of the different forms of the equations of motion	171
6. The three linear momenta	174
7. The equation for gravitational radiation	176
8. On the invariance properties of $P^a(G)$	181
9. Gravitational radiation and the choice of a coordinate system	182
10. On the generalization of the coordinate system	-190
11. Radiation and the approximation method	195
APPENDICES	
1. The δ function	20 2
2. The field values on the world-lines	213
3. The covariant character of the δ 's. Tensors on world-lines	217
BIBLIOGRAPHY	221
INDEX	227