CONTENTS

Editors' Foreword v
Preface vii
Chapter 1. Lorentz Transformations and Invariants 1
1-1 The invariant line element 1
1-2 Spacelike and timelike distances; future and past; the light cone 3
1-3 The Lorentz transformation 7
1-4 The transformation of velocities 12
1-5 Four-vectors and invariants 14
1-6 Transformation of physical quantities 15
Chapter 2. Choice of a System of Units 19
Chapter 3. Some Practical Examples for the Use of Invariants 22
3-1 Center-of-momentum energy and velocity 23
3-2 The energy, momentum, and velocity of one particle seen from the rest system of another one 28
3-3 The energy, momentum, and velocity of a particle seen from the center-of-momentum system 30
Chapter 4. The Lorentz Transformation to the Rest System of an Arbitrary Particle 33
Chapter 5. The Transformation of Differential Cross Sections; Jacobian Determinants 36
5-1 Transformation of integrals 36
5-2 Transformation of differential cross sections 39
5-3 Change of the shape of a momentum spectrum under a Lorentz transformation (qualitatively) 46
5-4 Change of the shape of a momentum spectrum under a Lorentz transformation (quantitatively) 50
5-5 Appearance of a fast-moving object 54
Chapter 6. Variables and Coordinate Systems Frequently Used in Elastic Scattering 57
6-1 The independent variables of the scattering process 57
6-2 Useful Lorentz systems for the descriptions of the scattering process 61
6-3 The variables s, t, u 67
6-4 Graphical representation of s, t, u; physical regions 70
Chapter 7. Phase-Space Considerations 80
7-1 The significance of phase space and its definition 81
7-2 The statistical theory 86
7-3 Invariant and noninvariant phase space 89
7-4 Mass distribution 93
7-5 The Dalitz plot 98
7-6 Spectra of decay products 107
Chapter 8. Short Considerations on Relativistic Notation 116
Chapter 9. Precession of the Polarization of Spin
$1 / 2$ Particles Moving in an Electromagnetic Field 124
9-1 The three-vector of polarization 124
9-2 Equation of motion of a "polarization four-vector" 126
9-3 The polarization four-vector in a moving frame of reference 130
9-4 The rate of change of the direction of polarization 132
9-5 The case of mass zero 142
9-6 The relation of the polarization four-vector to the angular-momentum tensor 143
9-7 The correspondence between the polarization four-vector, angular momentum, and γ-matrices in Dirac's theory 158
Index 162

