Contents

1.	Kine	matics in Inertial Axes	1
	1.1	The "Aether" in the Nineteenth Century	1
	1.2	Some Experimental Evidence	2
	1.3	Einstein's Relativity Postulates	4
	1.4	Time and Length Standards. Synchronization	6
	1.5	The "Simple" Lorentz Transformation	7
	1.6	More General Lorentz Transformations	10
	1.7	Time Dilatation and Proper Time	12
	1.8	Length Measurements	15
	1.9	Volume and Surface Elements	17
	1.10	Visual Perception of Objects in Motion	20
	1.11	Transformation of Velocities and Accelerations	23
	1.12	Four-Vectors	25
	1.13	Kinematics in Four Dimensions	27
	Prob	lems	29

2.	Dyna	mics in Inertial Axes	34
	2.1	Equation of Motion of a Point Mass	34
	2.2	Mass and Energy	36
	2.3	A Few Simple Trajectories	39
	2.4	Transformation Equations for Force, Energy, and Momentum	41
	2.5	Four-Dimensional Dynamics	44
	2.6	Systems of Points	46
	2.7	Elastic Collisions	48
	2.8	Motion of a Point with Variable Rest Mass	50
	2.9	Rocket Acceleration	52
	2.10	Inelastic Collisions	55
	2.11	Incoherent Matter	58

2.12 The Kinetic Energy-Momentum Tensor	61
2.13 The Total Energy-Momentum Tensor	63
Problems	66

3. Vacuum Electrodynamics in Inertial Axes	69
3.1 Transformation Formulas for the Sources	70
3.2 Transformation Equations for the Fields	72
3.3 Force on a Charged Particle	74
3.4 Four-Currents	77
3.5 The Electromagnetic Tensors	80
3.6 Potentials	82
3.7 Transformation of a Plane Wave: The Doppler Effect	83
3.8 The Liénard-Wiechert Fields	87
3.9 Fields of a Charge in Uniform Motion	89
3.10 Fields of a Static Dipole in Uniform Motion	92
3.11 Radiation from an Antenna in Uniform Motion	93
3.12 Radiation from a Moving Oscillation Dipole	98
3.13 Doppler Spectrum from a Moving Source	100
Problems	103

Fiel	ds in Media in Uniform Translation	106
4.1	Polarization Densities	106
4.2	Constitutive Equations	108
4.3	Some Useful Forms of Maxwell's Equations	111
4.4	Point Charge Moving Uniformly in a Dielectric Medium	113
4.5	The Cerenkov Effect	116
4.6	Waves in a Moving Dielectric. The Fresnel Dragging Coefficient	120
4.7	Green's Dyadic for a Moving Dielectric	123
4.8	Electric Dipole Radiating in a Moving Dielectric	125
Prot	olems	127

5.	Boun	dary-Value Problems for Media in Uniform Translation	129
	5.1	Boundary Conditions	129
	5.2	Dielectric Slab Moving in Time-Independent Fields	132

5.3	The Wilsons' Experiment	135
5.4	Sliding Contacts. A Simple Problem	137
5.5	Material Bodies Moving at Low Velocities	140
5.6	Conductors Moving in a Pre-Existing Static Magnetic Field	142
5.7	Circuit Equations	145
5.8	Motional E.M.F	147
5.9	Normal Incidence of a Time-Harmonic Plane Wave on a Moving Mirror	148
5.10	Arbitrary Time-Dependence of the Incident Plane Wave	150
5.11	Oblique Incidence of a Time-Harmonic Plane Wave on a Moving Mirror	152
5.12	A Time-Harmonic Plane Wave Incident on a Dielectric Medium	153
5.13	Reflection of a Plane Wave on a Moving Medium of Finite Conductivity	157
5.14	Revisiting the Boundary Conditions at a Moving Interface	159
5.15	Scattering by a Cylinder Moving Longitudinally	164
5.16	Scattering by a Cylinder Moving Transversely	167
5.17	Three-Dimensional Scattering by Moving Bodies	171
5.18	The Quasistationary Method	173
Prob	lems	174

6.	Elect	tromagnetic Forces and Energy	178
	6.1	Surface and Volume Forces in Vacuum	178
	6.2	Maxwell's Stress Tensor	180
	6.3	A Few Simple Force Calculations	182
	6.4	Radiation Pressure on a Moving Mirror	183
	6.5	Radiation Force on a Dielectric Cylinder	185
	6.6	Static Electric Force on a Dielectric Body	188
	6.7	Magnetic Levitation	190
	6.8	Levitation on a Line Current	192
	6.9	Electromagnetic Energy in an Inertial System	197
	6.10	Four-Dimensional Formulation in Vacuum	200
	6.11	The Electromagnetic Energy-Momentum Tensor in Material Media	201
	Prob	1ems	203

7.	Acce	lerated Systems of Reference	206
	7.1	Coordinate Transformations	206
	7.2	The Metric Tensor	208

7.3	Examples of Transformations	210
7.4	Coordinates and Measurements	213
7.5	Time and Length	216
7.6	Four-Vectors and Tensors	217
7.7	Three-Vectors	221
7.8	Velocities and Volume Densities	223
7.9	Covariant Derivative	225
Prob	lems	227

8.	Grav	itation	230
	8.1	Inertial and Gravitational Masses	230
	8.2	The Principle of Equivalence	232
	8.3	Curvature	234
	8.4	Einstein's Equations	235
	8.5	The Small-Field Approximation	237
	8.6	Gravitational Frequency Shift	239
	8.7	Time Measurement Problems	241
	8.8	Some Important Solutions of Einstein's Equations	244
	8.9	Point Dynamics	246
	8.10	Motion in the Schwarzschild Metric	247
	8.11	Motion of a Photon in the Schwarzschild Metric	250
	8.12	Strongly Concentrated Masses	253
	8.13	Static Cosmological Metrics	255
	8.14	Nonstatic Cosmological Metrics	257
	8.15	Recent Cosmological Observations	259
	Prob	lems	261

9.	Maxw	vell's Equations in a Gravitational Field	264
	9.1	Field Tensors and Maxwell's Equations	264
	9.2	Maxwell's Equations in Rotating Coordinates	267
	9.3	Transformation Equations for Fields and Sources	269
	9.4	Constitutive Equations in Vacuum	271
	9.5	Constitutive Equations in a Time-Orthogonal Metric	273
	9.6	Constitutive Equations in Material Media	274
	9.7	The Co-Moving Frame Assumption	277
	9.8	Boundary Conditions	279
	Prob	lems	281

omagnetism of Accelerated Bodies	283
Conducting Body of Revolution Rotating in a Static Magnetic Field	283
Conducting Sphere Rotating in a Uniform Magnetic Field	287
Motional E.M.F	289
Generators with Contact Electrodes	291
Dielectric Body of Revolution Rotating in a Static Field	293
Rotating Permanent Magnets	296
Scattering by a Rotating Circular Dielectric Cylinder	2 9 8
Scattering by a Rotating Circular Conducting Cylinder	301
Scattering by a Rotating Dielectric Body of Revolution	304
Scattering by a Rotating Sphere	306
Reflection from a Mirror in Arbitrary Linear Motion	309
Reflection from an Oscillating Mirror, at Normal Incidence	311
Reflection from an Oscillating Mirror, at Oblique Incidence \cdot	313
Scattering by Other Moving Surfaces	316
ems	317
	<pre>romagnetism of Accelerated Bodies</pre>

11.	Field	Problems in a Gravitational Field	320
	11.1	Fields Associated with Rotating Charges	320
	11.2	Schiff's Paradox	323
	11.3	Kennard's Experiment	325
	11.4	Optical Rotation Sensors	327
	11.5	Scattering by a Rotating Body of Arbitrary Shape	331
	11.6	Transformation of an Incident Wave to Rotating Coordinates $\cdot\cdot$	333
	11.7	Scattered Field in Rotating Coordinates	335
	11.8	Two Examples	337
	11.9	Low Frequency Scattering by Rotating Cylinders	339
	11.10	Quasistationary and Relativistic Fields	341
	11.11	Axes in Hyperbolic Motion	343
	11.12	The Induction Law	345
	11.13	Maxwell's Equations in a Schwarzschild Metric	349
	11.14	Light Deflection in a Gravitational Field	351
	Probl	ems	354

Appendix A. compleme	nts of Kinematics and Dynamics	358
A.1 Transformation	Matrix for the "Parallel" Transformation	358
A.2 Transformation	with Rotation	358

A.3 Transformation of Velocities	359
A.4 Relationship Between Force and Acceleration	360
A.5 Equations of Motion in Cylindrical Coordinates (r, φ ,z)	360
A.6 Equations of Motion in Spherical Coordinates (R,Θ,ϕ) $\ldots\ldots\ldots$	361
Appendix B Duadics	361
B 1 The Dvadic Notation	361
B.2 Operators on Dvadics	362
B.3 Green's Dyadic	363
Appendix C. Basis Vectors	364
Appendix D. Moving Open Circuits	366
List of Symbols	371
Some Useful Numerical Constants	377
References	379
Subject Index	397