CONTENTS

CHAPTER 1	Why	Quantum Mechanics?	1
	1.1	Newtonian Mechanics and Classical	
		Electromagnetism	1
		(a) Newtonian Mechanics	1
		(b) Electromagnetism	2
	1.2	Black Body Radiation	3
	1.3	The Heat Capacity of Solids and the	
		Photoelectric Effect	4
	1.4	Photon Momentum and Compton	
		Scattering Numerical Example	6
	1.5	Wave Aspects of Particles	8
		Numerical Example	
	1.6	The Hydrogen Atom and the Bohr Model	10
	Prob	olems	13
CHAPTER 2	Operators		15
	2.1	Mathematical Properties of Operators	15
		(a) Definitions	15
	2.2	The Eigenfunctions and Eigenvalues of	
		Operators	16
	2.3	Hermitian Operators	17
	2.4	Orthogonality of the Eigenfunctions of a	
		Hermitian Operator	18
	2.5	Normalization of Eigenfunctions	19
	2.6	Completeness of Eigenfunctions	19
	2.7	Dirac Notation	20
		Hermitian Adjoint Operators	22
	Prob	olems	22
CHAPTER 3	The I	Basic Postulates of Quantum Mechanics	23
	3.1	The Basic Postulates of Quantum	
		Mechanics	24
	3.2	The Average Value of an Observable	25

	3.3 The Form of Quantum Mechanical	
	Operators	26
	3.4 The Commutation Relation for the	
	Momentum and Position Operators.	
	Commuting Operators and Their	
	Eigenfunctions	27
	3.5 The Significance of $\psi(\mathbf{r})$	29
	3.6 The Eigenfunctions of the Energy	20
	Operators—The Schrödinger Equation	29
	3.7 The Uncertainty Principle	30
	3.8 The Uncertainty Principle Applied to	20
	Electromagnetic Fields	32
	Problems	34
CHAPTER 4	One-Dimensional Energy Eigenvalue Problems	36
	4.1 Infinite Potential Well	36
	4.2 Finite Potential Well	38
	4.3 Finite Potential Barrier	41
	4.4 Physical Manifestation of Particle	
	Tunneling:	44
	(a) α Decay of Nuclei	44
	(b) Tunneling in Solids	45
	Problems	45
CHAPTER 5	The Harmonic Oscillator	47
	5.1 Parity	47
	5.1 Parity 5.2 The Harmonic Oscillator	48
	The Hermite Polynomials	50
	The Harmonic Oscillator—Creation and	50
	Annihilation Operators	53
	5.3 The Annihilation and Creation Operators	53
	Problems	58
CHAPTER 6	The Quantum Mechanics of Angular Momentum	59
	6.1 The Angular Momentum Operators	59
ţ	6.2 The Eigenfunctions and Eigenvalues of \hat{l}_z	61
	6.3 The Eigenfunctions and Eigenvalues of the	
	Squared Magnitude of the Angular	
	Momentum	62
	The Normalization of $Y_l^m(\theta, \phi)$	66
	The Parity of $Y_l^m(\theta, \phi)$	66
	Problems	69

CHAPTER 7	Particles in Spherical Symmetric Potential Fields and the Hydrogen Atom		70
	7.1	A Particle in a Spherically Symmetric	
		Potential Field	70
	7.2	The Hydrogenic Atom	72
		The Eigenvalues	74
	77.0	The Normalization Constant	75
	7.3	Nuclear Mass Correction of the Hydrogen	77
		Atom Problem Recoil Energies and Doppler Shifts	80
		Level Degeneracy	81
		Linear Combination of Eigenfunction	82
	7.4	Hybridized Wavefunctions and Molecular	
		Bonding	84
	Prob	olems	85
CHAPTER 8	Systems of Identical Particles		87
	8.1	Systems of Two Electrons	87
	8.2	The Helium Atom	90
		The First-Order Correction to E_0	91
		The Excited States	93
	Prol	blems	94
CHAPTER 9	Matr	ix Formulation of Quantum Mechanics	95
	9.1	Some Basic Matrix Properties	95
		The Unit Matrix	96
		The Inverse Matrix	96
		Hermitian Adjoint Matrices, Hermitian	
		Matrices	96
	0.0	Unitary Matrices	97
	9.2	Transformation of a Square Matrix	97
	9.3	Matrix Diagonalization	97 98
	9.4	Representations of Operators as Matrices A Unitary Transformation Matrix	99
	9.5	Transformation of Operator	33
	9.9	Representations	99
	9.6		55
	0.0	Eigenvalues of an Operator by the Matrix	
		Method	101
	9.7	Matrix Elements of the Angular	
		Momentum Operators	101
	9.8	Spin Angular Momentum	105
	9.9	Addition of Angular Momenta	106
	Pro	blems	108

CHAPTER 10	The '	Time-Dependent Schrödinger Equation	110
	10.1	The Statistical Interpretation of $\psi(\mathbf{r}, t)$	111
	10.2	Expectation Values of Operators	112
	Prob	Ehrenfest's Theorem	113
	1100.	ICILIS	114
CHAPTER 11	Pertu	rbation Theory	115
	11.1	Time-Independent Perturbation Theory First-Order Perturbation	115 116
		Second-Order Perturbation	117
	11.2	Time-Dependent Perturbation Theory	118
		Harmonic Perturbation	120
		Step Function Perturbation	123
	11.0	Limits of Validity of the Golden Rule	123
	11.3 Prob l	The Density Matrix Formalism	124
	Fron	ems	126
CHAPTER 12	The Interaction of Electromagnetic Radiation		
	with Atomic Systems		127
	12.1	Some Basic Electromagnetic Background	127
		The Energy of Electromagnetic Fields	129
	12.2	Quantization of Electromagnetic Modes Electromagnetic Creation and Annihilation	130
		Operators	132
		Traveling Wave Quantization	133
	12.3	Black-Body Radiation Derivation of the Average Energy per	133
		Mode	136
	12.4	Induced Transitions in Collision Dominated	
		Atomic Systems	137
	12.5	Spontaneous Transitions	139
	12.6	Quantum Mechanical Derivation of the	
	Probl	Spontaneous Transition Rate A	141
	FIODI	CHIS	145
CHAPTER 13	Absorption and Dispersion of Radiation in		
	Atom	ic Media	147
	13.1	The Time Evolution of a Collisionless	
		Two-Level System	148
	13.2	Absorption and Amplification in Atomic	
		Systems	152

		The Significance of $\chi_a(\omega)$	157
	13.4	Density Matrix Derivation of the Atomic	
		Susceptibility	158
		The Significance of $\chi'(\omega)$	164
	Probl	ems	164
CHAPTER 14	Laser	Oscillation	165
	14.1	Laser Oscillation	165
		The Fabry–Perot Laser	166
		The Laser Oscillation Frequencies	171
		The Ruby Laser	172
	Sumn	nary	173
	Probl	ems	174
CHAPTER 15	Quan	atum Statistics	176
	15.1 15.2	The Three Types of Quantum Particles The Counting Algebra for Quantum	176
	13.4	Systems Systems	179
		(A) Identical but Distinguishable Particles	179
		(B) Identical Indistinguishable Particles	179
		of Half-Odd Integral Spin—Fermions	180
		(C) Identical, Indistinguishable Particles	
		of Integral Spin—Bosons	181
	15.3	The Maxwell-Boltzmann, Fermi-Dirac,	
		and Bose-Einstein Statistics	182
		Case (A) Identical Distinguishable	
		Particles	183
		Case (B) Fermions	184
		Case (C) Bosons	184
	15.4	Systems with More than One Constituent	185
	15.5	Evaluating the Parameter β in the	
		Distribution Laws	186
		Derivation of g_s (15.38)	187
	Prob		189
CHAPTER 16	Some	e Specific Applications of the Statistical	
		ibution Laws	190
	16.1	The Maxwell-Boltzmann Distribution	190
	16.2		191
	16.3		195
	Probl	dems	197
		CONTENTS	хi
		COMILIAIS	~!

Electric Polarization, Susceptibility, and the Dielectric Constant

154

13.3

CHAPTER 17	The Band Theory of Electrons in Crystals	198	
	17.1 The Kronig-Penney Model	198	
	17.2 The Multielectron Crystal	207	
	17.3 The Motion of Electrons in Crystals	210	
	17.4 The Control of Conductivity of		
	Semiconductors by Impurities	212	
	Current Flow in Semiconductors	213	
	Problems	215	
CHAPTER 18	The Interaction of Electrons and Nuclei with		
	Magnetic Fields. Magnetic Resonance. The		
	Maser		
	18.1 Orbital Magnetic Moments	217	
	Numerical Example	221	
	18.2 Spin Angular Momentum	221	
	18.3 Nuclear Spins and Nuclear Magnetic		
	Resonance	223	
	18.4 Hyperfine Interaction	226	
	The Hydrogen Maser	229	
	18.5 Electron Paramagnetic Resonance	232	
	Problems	236	
CHAPTER 19	Charge Transport in Semiconductors	237	
	19.1 Carriers in Intrinsic Semiconductors	237	
	Electron Density	238	
	The Density of Holes	239	
	Intrinsic Semiconductors	241	
	19.2 The Ionization Energy of Impurity Atoms	242	
	19.3 Carrier Concentration in Doped		
	Semiconductors	246	
	"High" Temperature	247	
	"Low" Temperature	248	
	19.4 Scattering of Electrons in Semiconductor		
	Crystals	249	
	19.5 Diffusion and Recombination	253	
	The Einstein Relation	254	
	Recombination of Electrons and Holes	256	
	The Carrier Transport Equation	257	
	Diffusion in a Semi-Infinite Slab	258	
	Problems	259	

CHAPTER 20	The p - n Semiconductor Junction. The p - n - p Junction Transistor.		261
	20.1	The Carrier and Potential Profiles in a p-n	
		Junction	262
		The Contact Potential φ	262
	20.2	The p-n Junction with an Applied Voltage	265
		The Current Flow in <i>p-n</i> Junctions	267
		Junction Fields and Capacitance	269
	20.3	The p-n-p Junction Transistor	271
		The Transistor Currents	273
	Problems		278
CHAPTER 21	The Semiconductor Injection Laser		280
	21.1	Optical Absorption and Stimulated	
		Emission in Semiconductors	280
		Band-to-Band Transitions and Absorption	
		in Semiconductors	281
	Prob	lems	292
	Bibli	ography	293
	Inde	x	295