目 次

#	÷	አኔ	3
ᇒ	<i>^</i>	11	c

第1章	Lorentz 共変性と量子化	1
§ 1. 1	単位と記号法	1
§ 1. 2	古典電磁場	3
§ 1. 3	量子化にともなう問題点	6
§ 1. 4	ゲージ変換の自由度	10
§ 1.5	Coulomb ゲージでの量子化····	12
第2章	Gupta-Bleuler 形式 I——自由場	15
§ 2. 1	理論形式の枠組	15
§ 2. 2	Gupta の補助条件 ······	17
§ 2. 3	不定計量の導入	18
§ 2. 4	物理的状態ベクトルの構造	21
§ 2. 5	c 数ゲージ変換と真空	24
§ 2. 6	不定計量と場の量子論	25
第3章	Gupta-Bleuler 形式 II——相互作用場 …	29
§ 3. 1	相互作用 Lagrangian ······	29
§ 3. 2	Heisenberg 演算子による補助条件	31
§ 3. 3	Yang-Feldman 方程式と漸近条件	32
§ 3. 4	S 行列の unitary 性 ······	34
§ 3. 5	相互作用表示	36
§ 3. 6	Bleuler の補助条件	38
§ 3. 7	Dyson の S 行列······	39
§ 3. 8	相互作用表示での c 数ゲージ変換	41

§ 3. 9	荷電共役変換	16
第4章	摄 動 論	48
§ 4. 1	Gell-Mann-Low の関係式	48
§ 4. 2	基本的 Green 関数······	51
§ 4. 3	S 行列のゲージ構造 I —— c 数ゲージ不変性	56
§ 4. 4	S 行列のゲージ構造 II —— q 数ゲージ不変性	60
§ 4. 5	Ward-Takahashi の関係式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64
第5章	くりこみ理論	70
§ 5. 1	次数勘定法	70
§ 5. 2	くりこみ理論の処方箋	73
§ 5. 3	$\Gamma_\mu(p,q)$ のくりこみ	74
§ 5. 4	$S_{F}'(p)$ のくりこみ ····································	75
§ 5. 5	$D'_{\mu u}(k)$ のくりこみ――くりこみによるゲージのずれ \cdots	78
§ 5 . 6	外線のくりこみ	82
§ 5. 7	Källén 形式·····	85
§ 5. 8	Gotō-Imamura-Schwinger 項 ·····	9 2
第6章	共変ゲージ形式 I—— dipole ghost の導入	96
§ 6. 1	Froissart 模型 ·····	96
§ 6. 2	multipole ghost 状態 ·······	.00
§ 6. 3	質量のない dipole ghost——真空の定義1	.03
§ 6. 4	4 次元運動量表示	11
§ 6. 5	Nakanishi-Lautrup 形式 ······1	14
§ 6. 6	<i>q</i> 数ゲージ変換の困難1	.21
第7章	共変ゲージ形式 II—— gaugeon の導入	.24

ix

§7.3 Heisenberg 演算子のくりこみ 131 §7.4 電磁場の4次元運動量表示 134 §7.5 スペクトル表示と漸近条件 140 第8章 中性ベクトル場の理論 144 §8.1 従来の形式 144 §8.2 共変ゲージ形式の拡張 148 §8.3 拡張された q 数ゲージ変換 155 §8.4 Heisenberg 演算子のくりこみとくりこみ項 159 §8.5 スペクトル表示とその極限 164 §8.6 自発的対称性の破れ I—Goldstone の定理 168 §8.7 自発的対称性の破れ II—Higgs 機構 174 参考書と引用文献 185

引 ……………………191

索