第 0 章 これから'場'を学ぶ人への助言 ····································	1
第I章 近接作用の考え方	12
§ 1. Balance 方程式と連続の方程式 ·······	12
§ 2. 連続体中に働く力	
(a) 質量要素 16, (b) 長距離力 17, (c) 近距離力と応力 18, (d) 応力 tensor 19, (e) 応力 tensor の非対角項 22	
§ 3. 歪みの場·····	23
(a) 変位の場 23, (b) 微小変位理論 24	
§ 4. 速度の場·····	27
(a) 速度の場 27, (b) 物質の balance 28, (c) 運動量の balance 29	
§ 5. 速度場の性質	·30
(a) 流体の運動 30, (b) 渦なし運動, 非圧縮運動 32, (c) Vector potential 33	
第 Ⅱ 章 場を決定する方程式	· <i>36</i>
§ 1. 弾性体の方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· <i>37</i>
(a) 運動方程式 37, (b) 弾性体の energy 39, (c) 等方性の弾 性体 41, (d) 調和振動子 43	
§ 2. 流体の基本方程式	.44
(a) 連続体の角運動量 45, (b) Navier-Stokes の方程式 46, (c) 音波 47	
§ 3. 電磁場の基本方程式······	.48
(a) Maxwell の方程式 48, (b) 時間によらない場 49,	

(c) Faraday の法則 51, (d) 磁極間の Coulomb の法則 52, (e) 変位電流 55, (f) Lorentz の力 56, (g) 場の energy 57, (h) 場の運動量 59, (i) Vector と scalar potential 61, (j) Gauge 変換 62
\$4. 電磁場と調和振動子・・・・・・・・
第 III 章 物質場の波動方程式 ·······75
§ 1. 電子の場·····
(a) 電子場の方程式のたて方 75 , (b) 自由度の問題 78 , (c) 電子の粒子性 81 , (d) 調和振動子 81 , (e) 電子場の energy 82 , (f) 電子場の運動量 83
§ 2. 電子場の性質······84
 (a) Fermi-Dirac 統計 84, (b) 電子場と電磁場の相互作用 85, (c) 電荷と電流 86, (d) 電子の spin 88, (e) 空間回転 89, (f) Spin をもった電子場の電磁相互作用 91, (g) 全角運動量保存則 93, (h) 場の変換性と spin 94, (i) まとめ 96
§ 3. 相対論的場の方程式······ <i>96</i>
(a) Einstein-de Broglie の関係 96, (b) Klein-Gordon の方程式 97, (c) 相対論的記号 99, (d) Proca の方程式 101, (e) Minimal な電磁相互作用 102, (f) 相対論的 spinor 104, (g) 物理法 則の共変性 105
§ 4. Klein-Gordon 場の伝播 106
(a) 基本的な解 106, (b) 場の伝播 109, (c) Green 関数 110, (d) Yang-Feldman の式 112, (e) 場の伝播と粒子 114
第 IV 章 場の量子化 ······· 119
§ 1. 復習······ 115
§ 2. 調和振動子の代数学····· 122
(a) Heisenberg の運動方程式 112, (b) 2つの異なった解 123,

§3. 電子場の量子化	129
 (a)電子場 129, (b)場の運動方程式 132, (c)量子化された電子場と量子力学 133, (d)量子化された電子場の物理的意味 136, (e)電子の発生消滅 139, (f)電子のspin 140, (g)電子場の伝播関数 144 	
§ 4. Scalar 場の量子化	146
(a) 電磁場の量子化のむずかしさ 146, (b) Klein-Gordon の場 146, (c) 場の運動量 149, (d) 発生消滅演算子 151, (e) 複素 Klein-Gordon 場 151, (f) 反粒子 152, (g) Klein-Gordon 場 の伝播 153, (h) 相対論的因果律 155	
 85. 電磁場の量子化	<i>157</i>
第Ⅴ章 場と物質	166
§ 1. 場の理論における物質像····································	166
\$2. 場の相互作用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	172
§ 3. Spin と統計および反粒子の問題(a) Spin と統計 178, (b) Schrödinger 方程式 178, (c) 相対 論的場の場合 178	178
§4. 場の量子論と量子力学との関係(a) 自由粒子の集まり 180, (b) 相互作用のある場合 182,(c) 場の理論の特徴 183	180
§5. 固体中の素励起	183

第 VI 章 場の理論 sic et non	194
§ 1. 場の量子論の骨組み	194
(a) 場の量子論の骨組み 194, (b) 場の量子論の性格 196	
§ 2. 場の量子論の成功······	197
(a) 定性的な成功 <i>197</i> , (b) くりこみ理論 <i>197</i>	
§ 3. 場の量子論の困難·····	201
(a) 発散の困難 202, (b) 異常項の問題 204, (c) 場の量子論の目的? 208, (d) 適用限界の問題 210, (e) 問題解決への試み(その1) 214, (f) 問題解決への試み(その2) 215, (g) 量子化の問題 218	
付。 録	
A. Lorentz の質量公式 ······	220
B. Heisenberg の運動方程式	221
C. 調和振動子の代数····································	223
参 考 文 献	226
あ と が き	228
총 리	232