Contents

Preface	iX
 CHAPTER 1. QUANTUM-MECHANICAL DESCRIPTION AND REPRESENTATIONS 1.1. Quantum-mechanical description of physical systems 1.2. The Schrödinger representation 1.3. The Heisenberg representation 1.4. The interaction representation Problems 	1 1 3 4 5 6
 CHAPTER 2. THE SCATTERING MATRIX AND TRANSITION PROBABILITY 2.1. The scattering matrix 2.2. The time-shift operator in the interaction representation 2.3. Integrals of motion and diagonalization of the S-matrix 2.4. The transition probability per unit time 2.5. An integral equation for the t-matrix 2.6. Transformation of the scattering matrix. Cross-sections Problems 	10 10 13 17 18 21 23 27
 CHAPTER 3. STATIONARY SCATTERING THEORY 3.1. The scattering amplitude 3.2. The Lippmann-Schwinger equation 3.3. The relation between the scattering amplitude and the transition matrix 3.4. Inelastic scattering and reactions 3.5. The Born approximation Problems 	32 32 36 39 40 43 46
 CHAPTER 4. WAVE FUNCTION OF A PARTICLE IN AN EXTERNAL FIELD 4.1. Scattering in a central field. Expansion in partial waves 4.2. The rectangular potential well 4.3. The Coulomb field Problems 	51 51 58 61 64
 CHAPTER 5. THE OPTICAL THEOREM 5.1. The relation between the total cross-section and the elastic scattering amplitude 5.2. The unitarity relation for the elastic scattering amplitude Problem 	69 69 70 72
CHAPTER 6. TIME REVERSAL AND THE RECIPROCITY THEOREM 6.1. Transformation of the wave functions and operators on time reversal	74 74

v

Contents

6.2. The time-reversal operator for specific systems 6.3. The time-reversed wave function	77
6.4. The reciprocity theorem and detailed balance	78 81
Problems	84
CHAPTER 7. ANALYTIC PROPERTIES OF THE SCATTERING MATRIX	86
7.1. Analytic properties of the radial wave functions	86
7.2. The case of non-zero angular momenta	92
7.3. Zeros of the Jost function and bound states	94
7.4. The symmetry and location of the scattering matrix singularities in	
the complex plane	98
7.5. Bound states and redundant zeros	102
7.6. Quasi-stationary states and resonances 7.7. Virtual states	106
7.8. The scattering matrix in the case of a rectangular potential well	113
Problems	115 125
Chapter 8. Dispersion Relations	134
8.1. Integral representations of the Jost functions	134
8.2. Levinson's theorem	138
8.3. The complex energy surface	139
8.4. Analyticity of the scattering matrix and the causality principle	141
8.5. Dispersion relations for the scattering amplitude	143
Chapter 9. Complex Angular Momenta	14 9
9.1. Analytic properties of the scattering matrix in the complex angular	
momentum plane	149
9.2. Poles of the scattering matrix in the complex angular momentum plane	154
9.3. Asymptotic behaviour of the scattering amplitude when $\cos \theta \rightarrow \infty$	160
Problems	162
CHAPTER 10. SEPARABLE REPRESENTATION OF THE SCATTERING AMPLITUDE	166
10.1. The scattering amplitude off the energy surface	166
10.2. The Hilbert–Schmidt expansion for the scattering amplitude 10.3. Properties of the eigenvalues and eigenfunctions of the kernel of the	169
Lippmann–Schwinger equation	171
Problems	180
Chapter 11. Scattering in a Three-particle System	187
11.1. The Faddeev equations	187
11.2. Positions and momenta in a three-particle system	192
11.3. The momentum representation	194
11.4. Expansion in partial waves	197
11.5. Separable expansion of the two-particle <i>t</i> -matrix and reduction of the	
Faddeev integral equations to one-dimensional form	200
Problem	207

Contents

CHAPTER 12. SCATTERING OF PARTICLES WITH SPIN	211
12.1. The spin wave function and density matrix	211
12.2. Expansion of the density matrix in spin-tensors	218
12.3. The scattering amplitude of particles with spin	224
12.4. Coupling of spin and orbital angular momenta and diagonalization	
of the S-matrix	230
12.5. Scattering of a spin- $\frac{1}{2}$ particle by a spinless particle	236
12.6. Scattering of a spin-1 particle by a spinless particle	245
Problems	252
Appendix	260
Bibliography	263
~	
INDEX	265