Contents

PAPERS

	Abstract	page . ix
1.	Quantisation as a Problem of Proper Values. Part I $\ldots \ldots \ldots$	1
2.	QUANTISATION AS A PROBLEM OF PROPER VALUES. PART II	13
3.	The Continuous Transition from Micro- to Macro-Mechanics	41
4.	On the Relation between the Quantum Mechanics of	
	Heisenberg, Born, and Jordan, and that of Schrödinger	45
5.	QUANTISATION AS A PROBLEM OF PROPER VALUES. PART III	62
6.	Quantisation as a Problem of Proper Values. Part IV $\hfill \ldots \ldots \ldots$	102
7.	The Compton Effect	124
8.	The Energy-Momentum Theorem for Material Waves	130
9.	THE EXCHANGE OF ENERGY ACCORDING TO WAVE MECHANICS	. 137

LECTURES

1.	DERIVATION OF THE FUNDAMENTAL IDEA OF WAVE MECHANICS	
	from Hamilton's analogy between ordinary mechanics	
	AND GEOMETRICAL OPTICS	155
2 .	Ordinary mechanics only an approximation, which no	
	LONGER HOLDS FOR VERY SMALL SYSTEMS	160
3.	BOHR'S STATIONARY ENERGY-LEVELS DERIVED AS THE FREQUENCIES	
	OF PROPER VIBRATIONS OF THE WAVES	163

CONTENTS

4.	ROUGH DESCRIPTION OF THE WAVE-SYSTEMS IN THE HYDROGEN
	atom. Degeneracy. Perturbation
5.	The physical meaning of the wave function. Explanation
	OF THE SELECTION RULES AND OF THE RULES FOR THE
	POLARIZATION OF SPECTRAL LINES
6.	DERIVATION OF THE WAVE EQUATION (PROPERLY SPEAKING)
	which contains the time $\dots 176$
7.	An atom as perturbed by an alternating electric field 177
8.	Theory of secondary radiation and dispersion
9.	THEORY OF RESONANCE RADIATION, AND OF CHANGES OF THE
	STATE OF THE ATOM PRODUCED BY INCIDENT RADIATION
	WHOSE FREQUENCY COINCIDES, OR NEARLY COINCIDES, WITH A
	NATURAL EMISSION FREQUENCY
10.	EXTENSION OF WAVE MECHANICS TO SYSTEMS OTHER THAN A
	SINGLE MASS-POINT
11.	Examples: the oscillator, the rotator 192
12.	Correction for motion of the nucleus in the hydrogen
	атом
13.	Perturbation of an arbitrary system 199
14.	Interaction between two arbitrary systems
15.	The physical meaning of the generalized ψ -function

VI