Contents

Preface	2
---------	---

Chapte	er 1. Introduction
1.	The Schrödinger Equation
2.	The Relation of the Boundary Condition to the Experimental Situation.
3.	The Cross Section
4.	The Optical Theorem
5.	Scattering from a Collection of Scatterers
Chapte	er 2. The Wave Packet Description of a Scattering Experiment
1.	The Free-Particle Wave Packet
2.	Wave Packet Description of a Scattering Experiment
Chapte	er 3. Differential Equation Methods
1.	Partial Wave Expansion
2.	Calculation of the Phase Shift
3.	The Low-Energy Limit
4.	The High-Energy Limit
5.	Elastic Scattering by a Coulomb Potential
Chapt	er 4. Green's Functions
1.	Integral Form of the Schrödinger Equation
2.	Properties of Green's Functions
3.	Eigenfunction Expansions of Green's Functions

CONTENTS

4.	Green's Function in Three Dimensions.	•		•	•	•	•		•			107
5.	Many-Particle Green's Functions	•	•	•	•	•	•	•	•			121

Chapter 5. Integral Equations of Scattering Theory and Their Solutions

. 136
1
. 141
. 157
r

Chapter 6. The Operator Formalism in Two-Particle Scattering Theory

1.	Operator Formalism	163
2.	Operator Form of the Scattering Equations	171
3.	The Optical Theorem	183

Chapter 7. Cross Sections for General Collision Processes

1.	General Scattering Formalism for Ordinary Scattering Processes	188
2.	Rearrangement Collisions	197
3.	Collisions Involving Identical Particles	205

Chapter 8. The Time-Dependent Approach to Scattering Theory

1.	The Schrödinger and Interaction Pictures	212
2.	Infinite Limits.	217
3.	Relation to the Time-Independent Theory	222
4.	The Cross Section	225

Chapter 9. The S Matrix and the K Matrix

1.	The S Matrix \ldots	227
2.	The Optical Theorem and the K Matrix	235
3.	Diagonalization of the S Matrix	244

Chapter 10. Invariance Principles and Conservation Laws

1.	Invariance under Space Translations					•						249
2.	Invariance under Time Translations										•	255
3.	Galilean Invariance											255
4.	Rotation Invariance	•									•	261
5.	Reflection Invariance											263
6.	Time-Reversal Invariance								•			266

CONTENTS

Chapter 11. Spin and Angular Momentum

1.	System of Spin $\frac{1}{2}$	279
2.	Addition of Spin and Orbital Angular Momentum	286
3.	Radial Integral Equation for Scattering by a Spin-Zero Target	289
4.	Scattering Amplitudes and T Matrices	292
5.	Cross Sections and Polarizations.	299
6.	Matrix Methods	307
7.	Projection Operators.	316

Chapter 12. Applications

-		
1.	The Two-Potential Formula.	321
2.	Some Examples of the Two-Potential Approach—The Distorted-Wave Approximation	327
3.	The Impulse Approximation	341
4.	Scattering by a Many-Body System	350
5.	The Optical Potential and the Elastically Scattered Wave	363
6.	Resonances	379
Index		391