CONTENTS

ı

INTE	EGRA	L QUANTUM MECHANICS AND SCATTERING	1
1.	Con	tinuum Quantum Mechanics	3
	1.A	The Scattering Experiment, 3	
		1.A.1 Time-dependent Approach, 5	
		1.A.2 Time-independent Trick, 6	*
	1.B	The 1- and 2-Body Schrödinger Equations, 8	
	1.C	Coordinate Systems and Elastic Scattering, 10	
		1.C.1 Elastic Kinematics, 13	
	1.D	The Particle and Channel Concepts, 15	
	Prob	olems, 16	
2.	Cur	rents and Cross Sections	18
	2.A	Elastic Scattering Currents, 18	
	2.B	Differential Cross Sections, 19	
		2.B.1 Nonelastic Cross Sections, 21	
	2.C	Total Cross Section, 21	
	2.D	The Optical Theorem, 23	
	Prol	plems, 28	
3.	Pari	tial-Wave Functions and Expansions	30
	3.A	Shifted Waves, 30	
		3.A.1 Plane Waves, 31	
		•	vii

		2.4.2. 781
		3.A.2 Distorted Waves, 33
		3.A.3 Phase Shifts, 34
		3.A.4 Incoming and Outgoing Waves, 38
	a D	3.A.5 Elastic Waves with Absorption, 39
	3.B	Partial-Wave Amplitudes, 40
		3.B.1 Differential Cross Section, 41
		3.B.2 Total Cross Sections, 43
	3.C	, ,
		3.C.1 Just for Scattering, 46
		3.C.2 Bound-State Connection, 46
	Prob	olems, 47
4.	Scat	ttering Applications: Lengths, Resonances,
		lomb 50
	4.A	The Low-Energy Limit, 50
		4.A.1 Scattering Length, 51
		4.A.2 Low-Energy Wave Function, 52
		4.A.3 Relation to Bound States, 56
	4.B	Resonances, 58
		4.B.1 Breit-Wigners, 58
		4.B.2 Complex Energy States and Exponential Decay, 65
	4.C	Coulomb Scattering; A Bad Example, 68
		4.C.1 Pure Coulomb Scattering, 68
		4.C.2 Shielded Coulomb Potential, 71
		4.C.3 Coulomb Plus Short-Range Potentials, 74
	Prob	plems, 75
_	_	
5.	Gre	en's Functions and Integral Schrödinger Theory 80
	5.A	Definition of Green's Function, 81
	5.B	Solution via Eigenfunction Expansion, 82
	5.C	Solution via Spectral Representation, 83
		5.C.1 Evaluation of G_E with Residues, 84
		5.C.2 Other Boundary Conditions, 87
	5.D	Lippmann-Schwinger Wave Equation, 88
		5.D.1 Integral Expression for f , 89
	5.E	Born Approximation; The Neumann Series, 90
		5.E.1 Application to Yukawa and Coulomb Potentials, 92
	5.F	Born Approximation for Scattering from Bound Systems, 94
	Prob	plems, 98

6.	The	Transition and Potential Matrices	102
	6.A	T- and V-Matrix Elements, 102	
	6.B	Lippmann-Schwinger Equation for T, 104	
		6.B.1 Easy Derivation of Born Series, 105	
	6.C	Off the Energy Shell, 106	
		6.C.1 Example: Off-Shell T, 107	
	Prob	olems, 109	
7.	Forr	nal Quantum Mechanics	113
	7.A	Operator Form of Schrödinger's Equation, 113	
	7. B	Operator Form of the Lippman-Schwinger Wave Equation, 115	
		7.B.1 Momentum Space LS Wave Equation, 116	
		7.B.2 Other Operator Forms, 117	
	7.C	Proof of Orthogonality, 118	
	7.D	Operator Equation for T, 119	
	7.E	The Bound-State Connection, 121	
	7.F	Unitarity of T and the Optical Theorem, 122	
	7.G	Reaction and Scattering Matrices R and S, 124	1
	7.H	The Two-Potential Formula, Tutorial, 126	
	Prob	olems, 127	
8.	Inte	gral Schrödinger Theory in the klm⟩ Basis	130
	8.A	Partial-Wave Green's Function, 130	
	8.B	The u_l Equation, 132	
	8.C	The T_1 Equation, 133	
	8.D	Energy-Angular Momentum Representation klm>, 134	1
		8.D.1 Half-Off-Shell T_i for Square Well, 140	
		8.D.2 Born Approximation for T_b , 142	
	8.E	Optical Theorem, 142	
		8.E.1 On-Shell R_l and T_l , 143	
	8.F	Born Series for Wave Function, 144	
	Prob	plems, 145	
9.	Spir	n Theory	147
	9.A		
	7.A	Basic Description of Spin, 147 9.A.1 Definition, 147	
		/// 1/1 / /	

Y	CONTENTS

		9.A.3 Polarized Beams, 152	
		Schrödinger Equation for Spin Orbit Potential, 155	
		9.B.1 Wave Function Expansion, 156	
		9.B.2 Solution, 159	
		9.B.3 Momentum Space $0 \otimes \frac{1}{2}$, 162	
		ems, 163	
10.	Spin	Phenomonology and Identical Particles	166
	10.A	F as a Matrix in Spin Space, 166	
	10.B		
		10.B.1 Cross Sections, 168	
		10.B.2 Polarization, 171	
		10.B.3 Polarization Analysis, 172	
	10.C	Extensions for Identical Particles, 175	
		10.C.1 Boson-Boson, 177	
		10.C.2 Fermion-Fermion, 179	
	Probl	ems, 180	
11.	Many	y-Body Problems	183
	11.A	General Ideas, 183	
		Hartree Approximation, 185	
		Correlations and Determinantal Wave Functions, 186	
		11.C.1 Correlation Function, 188	
	11.D	Hartree-Fock Equations, 190	
	Probl	ems, 195	
12.	Statis	stical Help with Many-Body Problems	198
	12.A		
	12.71	12.A.1 Solutions, 202	
	12.B	Thomas–Fermi–Dirac Equation, 204	
	12.C	Density Functional Theory, 205	
	12.D	Bethe-Goldstone Equation, 208	
		12.D.1 Fermion Matter, 211	
		12.D.2 Energy of Nuclear Matter, 212	
	Probl	ems, 214	
		,	

9.A.2 Mathematical Description, 148

		CONTENTS	AI.
REL	ATIVIS	STIC QUANTUM MECHANICS	217
13.	Relat	ivistic Wave Equations for Spinless Particles	219
	13.A	Canons, 220	
	13.B	Relativistic Schrödinger, 221	
	13.C	Relativistic Lippmann-Schwinger, 222	
	13.D	Klein-Gordon for Free Particles, 222	
		13.D.1 Properties, 223	
		13.D.2 Probability and Current, 225	
	13.E	Interactions and the KGE, 227	
		13.E.1 Minimal Electromagnetic Coupling, 227	
		13.E.2 Positive- and Negative-Energy Degrees of Freedom, 230	
		13.E.3 Relation to Schrödinger Equation, 230	
		13.E.4 An Atomic Solution, 231	
		13.E.5 A Paradoxical Solution. 232	
	Probl	ems, 237	
14.	Dirac	Equation :	240
	14.A	Derivation, α and β Matrices, 241	
	14.B	At-Rest Solutions, 244	
	14.C	Covariant Form, γ Matrices, 245	
		14.C.1 Standard γ Representation, 246	
		14.C.2 All Possible 4 × 4 Matrices, 247	
	14.D	Probability and Current, 247	
	14.E	Lorentz Transformation of Wave Functions, 249	
		14.E.1 Requirement on Dirac Equation, 249	
		14.E.2 The Transformation Operator, 250	
		14.E.3 Bilinear Covariants, 253	
		14.E.4 Including Parity, 254	
	Probl	ems, 255	
15.	Com	ponents of Dirac Wave Functions	257
	15.A	Holes in the Sea, 257	
	15.B	Plane Waves, 261	
		15.B.1 Properties of Plane-Wave Spinors, 263	
		15.B.2 Projection Operators, 265	
	15.C	*	
	13.0	Expansions in Figure 1, 4,100, 200	

	15.D	Gordon Decomposition of Current: Tutorial, 266	
	15.E	Interactions and the Dirac Equation, 268	
		15.E.1 The Upper and Lower Split, 268	
		15.E.2 Nonrelativistic Limit, the Electron's Structure,	269
	15.F	Mass-Zero Dirac Equation: Tutorial, 273	
	Proble	ems, 274	
16.	Inter	actions in Dirac Theory	277
	16.A	Central-Force Problem, 277	
		16.A.1 Constants of Motion, 278	
		16.A.2 Form of Wave Function, 278	
		16.A.3 Coupled Radial Equations, 280	
	16.B	Hydrogen Atom, 283	
		16.B.1 Eigenenergy, 285	
	16.C	General Force Problem, 288	
		16.C.1 Equivalent Schrödinger Potential, 289	
	Probl	ems, 291	
17.	Integ	ral Forms of the Dirac Equation, Scattering	293
	17.A	Distorted and Plane Waves, 293	
	17.111	17.A.1 Asymptotic States, 294	
		17.A.2 Spin Scattering, 296	
	17.B		
	17.C	- '	
		17.C.1 Partial Waves, 298	
		17.C.2 Internal Negative-Energy States, 299	
	17.D	Integral Forms of Dirac Equation, 302	
		17.D.1 Basis States, 302	
		17.D.2 Green's Function, 302	
		17.D.3 Equation for Ψ, 303	
		17.D.4 Integral Equation for T, 304	
		17.D.5 Energy Decomposition, 305	
	Probl	lems, 306	
40	A II	ications: Solving Even Relativistic Integral	
18.		ications: Solving Even Relativistic integral	309
	18.A	Principal Value and iε Integrals, 309	
	18. B	Numerical Integration, 312	

			18.C.1 Solution for T Matrix, 315	
		18.D	Relation to Formal Theory and Bound States, 315	
		18.E	Relativistic Generalizations, 316	
			18.E.1 Relativistic Schrödinger Equation, 317	
			18.E.2 Relativistic Schrödinger Bound States, 318	
			18.E.3 Klein-Gordon Equation, 318	
			18.E.4 Dirac Equation, 319	
		18.F	Bound States in P Space with Coulomb-like Forces,	319
		Probl	ems, 321	
Ш	QUA	NTUM	FIELDS	323
	19.	Seco	nd Quantization	325
		19.A	Occupation Number Space, 325	
		19.A	19.A.1 Construction of States, 327	
		19.B	Second Quantized Operators, 330	
		19. D	19.B.1 Field Operator, 331	
			19.B.2 Dynamical Operators, 332	
		19.C	Time Dependence, 333	
		19.0	19.C.1 Heisenberg Picture in Fock Space, 335	
		Probl	ems, 336	
		FIOOI	tins, 550	
	20.	Quan	tized Electromagnetic Fields	338
		20.A	Classical Electromagnetic Fields: Review, 338	
		20.R	The Photon State Vector, 341	
		20.C	Electron-Photon Interaction, 342	
		20.0	20.C.1 Interaction Hamiltonian, 343	
		20.D	Following the Golden Rule, 344	
		20.10	20.D.1 Decaying State, 345	
		20.E	Radiation from Two-Level System, 346	
		20.1	20.E.1 Dipole Approximation, 348	
			20.E.2 Transition Rate, 350	
			20.E.3 Light Absorption, Planck's Law, 352	
		Probl	ems, 355	
		2 2 5 0 1	,	

Reduction of Lippmann-Schwinger Equations to Linear

18.C

Equations, 313

21.	Appli	cations of Nonrelativisitic QED	358
	21.A	Light Scattering from Electrons, 358	
		21.A.1 Classical: Rayleigh, Thompson, and Compton,	358
		21.A.2 Quantum Photon-Electron Scattering, 361	
	21.B	Coherent States of the Radiation Field: Tutorial, 370	
		21.B.1 Nonclassical Aspects of Fock States, 371	
		21.B.2 Construction of Coherent States, 371	
	21.C	Self-Energies and Their Handling, 373	
		21.C.1 Classical, 374	
		21.C.2 Quantum, 375	
		21.C.3 Mass Renormalization, Free e, 376	
		21.C.4 Mass Renormalization, Bound <i>e</i> (Lamb Shift),	377
	Proble	ems, 380	
22.	Intera	action of Photons with Quantized Matter, QED	382
	22.A		
	22	22.A.1 Hole Picture, 383	
	22.B		
		22.B.1 Longitudinal and Timelike Photons, 392	
	22.C	A Sample: Relativistic Compton Scattering, 394	
		22.C.1 Setup, 394	
		22.C.2 Second-Order Matrix Elements, 397	
		22.C.3 Tricks, 398	
		22.C.4 Extracting Cross Sections, 399	
	Proble	ems, 400	
23.	Potes	ntials from Field Theory	402
20.		•	
	23.A	Relating Field Theory and Potential Amplitudes, 402	
		23.A.1 One-Body Interactions, 403	
	22 D	23.A.2 Two-Body Interactions, 404	
	23.B	The Electron-Electron Interaction and the Photon's Mass, 405	
		23.B.1 The Coulomb Interaction: An Approximation,	408
		23.B.2 The Breit Interaction: An Improvement, 409	
	23.C	One-Boson-Exchange Potentials, 411	
		23.C.1 Meson Origin of the Nuclear Force, 411	
		23.C.2 Coupling of Fields, 412	
	Proble	ems, 416	

24.	Appli	cations: Phonon Fields, Weak Fields	418
	24.A	Phonons, 418	
		24.A.1 Classical One-Dimensional Vibrations, 419	
		24.A.2 Quantized One-Dimensional Vibrations, 420	
		24.A.3 Three-Dimensional Phonons, 423	
	24.B	Electron-Phonon Interactions, 425	
	24.C	The Weak Force, 426	
		24.C.1 Historical Puzzle, 427	
		24.C.2 Form of the Weak Hamiltonian, 427	
		24.C.3 Beta Decay Spectrum, 432	
	Probl	ems, 436	
25.	Wave	Equations from Field Theory	438
	25.A	Bethe-Salpeter Equation, 438	
		25.A.1 Deduction, 439	
		25.A.2 In Coordinate Space, 441	
		25.A.3 In Momentum Space, 444	
		25.A.4 Properties, 447	
	25.B	Blankenbecler-Sugar Equation, 447	
	Probl	ems, 450	
Appendi	x A i	Natural Units and Plane Waves	451
	A	A.1 Natural Units, 451	
		A.2 Plane Waves in Little and Big Boxes, 452	
		A.2.a Little Boxes, 453	
		A.2.b The Big Box, 454	
Appendi	x B [Dirac Notation and Representations	456
	F	3.1 Dirac Notation, 456	
	_	3.2 Explicit Representations, 458	
		B.2.a Coordinate Space $ \mathbf{r}\rangle$, 458	
		B.2.b Momentum Space $ \mathbf{k}\rangle$, 458	
		B.2.c Energy and Angular Momentum klm>, 460	
Appendi	x C F	Four-Vectors and Lorentz Transformations	463
Appendi	x D 1	Γhe Dirac Equation	467
Referenc	ces		471
ndex		·	477